说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> ω相
1)  ω Phase
ω相
1.
Ω phase is the key hardening precipitate.
结果表明:实验用高纯Al-Cu-Mg-Ag合金板材具有较好的热稳定性和塑性,经185℃时效50h后合金的强度较峰值状态仅下降6%~7%,同时伸长率δ10保持在8%以上;Ω相是高纯Al-Cu-Mg-Ag合金的主要强化相,当合金处于峰值状态时,Ω相与基体之间会产生较大的错配应变,并在Ω相的细小片层处产生位错,为随后二次析出相θ′的析出提供有利的形核位置;延长时效时间将促进尺寸较大的Ω相和大部分θ′相(包括先析出相和二次析出相)向平衡相θ转变,但Ω→θ的转变远比θ′→θ的转变缓慢。
2.
When the specimens were aged between 300 ℃ and 350℃, the globular ω phase formed firstly in β matrix, and then gradually transformed to equilibrium particle α ph.
结果发现:300℃~350℃时效过程中,在β基体上首先会形成球状ω相,α相必须借助中间过渡相ω形核,多呈颗粒状;400℃~450℃时效,α相既可通过中间ω相转变,多呈颗粒状,也可直接从β相中形核,多呈针状;500℃~650℃时效,针状α直接从β晶界或晶内析出,500℃以上时效可发现点状α相“连点成线”的现象,可能与变形带有关;700℃~750℃时效,平衡α相多呈棒状,700℃时效10min发现块状α相析出。
3.
The formation processing of ω phase in Ti 3Al based alloy has been studied by electron diffraction in the paper.
通过电子衍射的方法研究了Ti3Al基合金中ω相的形成规律及形成过程。
2)  ω-phase
ω相
1.
ω-phase in α2+γ lamellar structure of Ti-45Al-10Nb alloy (atomic fraction, %) was investigated by high resolution electron microscopy (HREM).
利用高分辨电镜(HREM)观察了Ti-45Al-10Nb(原子分数,%)合金α2+γ层状结构中的ω相
2.
The experimental results for three selected ternary alloy systems: Ti-Al-V,Ti-Al-Mo and Ti-Al-Nb show that the formation of ω-phase obeys the electron concentra-tion rule.
Ti-Al-V,Ti-Al-Mo和Ti-Al-Nb合金系的实验结果表明,ω相的形成是遵守电子浓度规律的。
3)  Ωphase
Ω相
1.
The interaction between dislocations andΩphases in Al-Cu-Mg-Ag alloy during deformation has been studied by traditional transmission electron microscopy and high resolution transmission electron microscopy.
研究表明:对于与基体呈半共格的Ω相,位错在变形过程中是切割过而不是绕过Ω相。
2.
The nucleation and coarsening of the main precipitationΩphase were investigated,and the concentration ledge coarsening mechanism was proposed.
结果表明:合金的主要强化相是Ω相和θ′相。
4)  structure of the ω phase
ω相结构
5)  α→ωphase transition
α→ω相变
6)  ω-consistency,omega-consistency
ω相容性
补充资料:ω-Bromotoluene
分子式:C7H7Br
分子量:171.04
CAS号:100-39-0

性质:无色液体。熔点-3--1℃,沸点201℃,114℃(2.0kPa),相对密度1.4380(22/0℃),折光率1.5752,闪点86℃。能与乙醇、苯、乙醚混溶,不溶于水,在水中缓慢水解。有强烈的催泪性。

制备方法:由甲苯溴化而得。将甲苯加热到50℃,加溴反应,反应温度为75-80℃,反应6h,在常压下分馏除去140℃以前的馏分,然后减压蒸馏,收集112-114℃(2.0kPa)馏分,得苄基溴。

用途:有机合成中间体、发泡剂的原料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条