说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> p型掺杂
1)  p-doping
p型掺杂
1.
This article gives a description of the progress in self-com-pensation model for p-doping, the codoping process and mechanism, PL .
使用金属有机物化学气相沉积(MOCVD)方法已经获得实用性的p型掺杂,但是其电学和光学特性都不能让人满意。
2.
This paper was overviewed the basic properties of GaN-based material,analyzed key technologies in making blue GaN-based LEDs,such as MOVPE,P-doping ohmic contact,etching and chip dicing saw,and introduced recent progresses of technologies at present.
本文首先综述了GaN基材料的基本特性,分析了GaN基蓝光LED制程的关键技术如金属有机物气相外延,P型掺杂,欧姆接触,刻蚀工艺,芯片切割技术,介绍了目前各项技术的工艺现状,最后指出了需要改进的问题,展望了末来的研究方向。
3.
In the case of no determination of Al composition and p-doping density in MOCVD epitaxy of AlGaInP double heterostructure light emitting diodes,the relation of Al composition and luminescent efficiency is gotten under various p-doping density by analyzing carrier transportion in double heterojunction of LED,and the principle of doping density and Al composition vs.
在AlGaInP四元系双异质结发光二极管 (DH LED)的材料生长过程中 ,限制层的Al组分与p型掺杂浓度的确定有较大的随意性 ,这对LED的发光不利。
2)  p-type doping
P型掺杂
1.
Photoluminescence mechanisms,p-type doping,p-n junction and diluted magnetic property of ZnO-based semiconductor thin film are discussed in detail.
详细探讨了ZnO薄膜材料的发光机理、P型掺杂、p-n结的生长和稀磁性能,并对国内外的发展情况和存在问题进行了分析和探讨。
2.
ZnO film is the third generation semiconductor functional material) whose high quality p-type doping is the key for developing optoelectronic devices.
ZnO薄膜作为第三代半导体功能材料,高质量的p型掺杂是基于光电器件应用的关键。
3.
In order to fabricate such optoelectronic devices, the key problem of p-type doping should be resolved.
为了开发ZnO短波长光电器件,首要解决的 关键问题是氧化锌的p型掺杂
3)  high p-doping
p型高掺杂
4)  p-type codoping
p型共掺杂
5)  p type dopant
p 型掺杂剂
6)  boron-doped diamond
P型掺杂金刚石
1.
A super electric double-layer capacitor with boron-doped diamond electrode;
P型掺杂金刚石电极双电层电容器研究
补充资料:掺杂型结构导电高分子
分子式:
CAS号:

性质:结构型导电高分子是指高分子本身具有导电结构,不需借助外加导电性材料的聚合物,多为线性共轭聚合物和某些高分子金属络合物。这些聚合物经过掺杂处理之后形成电荷转移络合物,掺杂后其电导率可以大幅度提高,一般可以提高几个数量级,甚至可以接近常见金属导体的电导率,如聚乙炔和聚吡咯经化学或者电化学掺杂处理后,其电导率可以达到102S/cm以上,在某些场合可以替代金属材料。其特点和应用参见本征型导电高分子。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条