1)  electro-hydraulic position servo system

1.
Computer-aided design for electro-hydraulic position servo system;

2.
Analysis of accuracy of electro-hydraulic position servo system applied to flight simulation turntable;

3.
Research on Intelligent Control and Simulation Technology of the Electro-hydraulic Position Servo System;

2)  electrohydraulic position servo system

1.
Optimal control of electrohydraulic position servo system is designed by using optimal control theories and Riccati equation.

2.
Aiming at the tracking control problem of electrohydraulic position servo systems,a design method of adaptive sliding mode control with parameter adaptive performances,was presented based on sliding mode control theory.

3.
The adaptation law designed only for the block with time-variant parameters in electrohydraulic position servo systems can not only aviod the inverse stability of adaptive control, but also be implemented easily by a microprocessor within a short sample period.

3)  Electro-hydraulic servo position system

4)  the electro hydraulic servo system

5)  hydraulic servo system

1.
Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function(RBF)neural network model is proposed to realize the failure detection and fault localization.

6)  Hydraulic servo position system

1.
As far as the hydraulic servo position system is concerned, there are parameters variety, outside disturbance and the nonlinear friction in it.

2.
It is difficult for the hydraulic servo position system to solve the problem that is caused by the parameters variety, outside disturbance and the friction nonlinear dead zone of the valve.

 伺服系统servomechanism    用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下，伺服系统专指被控制量（系统的输出量）是机械位移或位移速度、加速度的反馈控制系统，其作用是使输出的机械位移（或转角）准确地跟踪输入的位移（或转角）。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。   伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中，后来逐渐推广到很多领域，特别是自动车床、天线位置控制、导弹和飞船的制导等。采用伺服系统主要是为了达到下面几个目的：①以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。②在没有机械连接的情况下，由输入轴控制位于远处的输出轴，实现远距同步传动。③使输出机械位移精确地跟踪电信号，如记录和指示仪表等。   衡量伺服系统性能的主要指标有频带宽度和精度。频带宽度简称带宽，由系统频率响应特性来规定，反映伺服系统的跟踪的快速性。带宽越大，快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大，带宽越窄。一般伺服系统的带宽小于15赫，大型设备伺服系统的带宽则在1～2赫以下。自20世纪70年代以来，由于发展了力矩电机及高灵敏度测速机，使伺服系统实现了直接驱动，革除或减小了齿隙和弹性变形等非线性因素，使带宽达到50赫，并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此，在伺服系统中必须采用高精度的测量元件，如精密电位器、自整角机和旋转变压器等。此外，也可采取附加措施来提高系统的精度，例如将测量元件（如自整角机）的测量轴通过减速器与转轴相连，使转轴的转角得到放大，来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道，直接取自转轴的测角线路称粗读数通道。   伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。