说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 煤岩体结构
1)  coal-body
煤岩体结构
2)  lithostructure
煤岩结构
3)  coal body structure
煤体结构
1.
Geological controls of coal body structure atNo.1 mine in Shizuishan mine area;
石嘴山一矿煤体结构变化的地质控制
2.
To ensure safe production in coal mine,the author analyzes geological factors of Pingdingshan tenth coal mine,which effect the gas source and outburst of outburst coal bed,such as geological structure,change of the coal layer's thickness,coal body structure,bury depth and so on.
为确保煤矿安全生产,作者对平顶山十矿影响突出煤层瓦斯赋存和突出的地质构造、煤层厚度的变化、煤体结构、埋藏深度等地质因素进行了分析研究,认为:地质条件对煤层瓦斯体积含量和煤与瓦斯突出的分区分带具有明显的控制作用;井田内厚度小于2 m的单一煤层一般不具突出危险性,但随着开采深度的增加有可能发生突出;戊9-10煤层分叉合并线附近为煤与瓦斯突出带,其他煤层分叉合并线附近可能形成煤与瓦斯突出危险带。
4)  coal structure
煤体结构
1.
The results of the analysis showed that the coal structure as the important cause of the coal wave velocity difference.
系统地测试了淮北煤田杨庄煤矿5,6煤层煤样的纵波速度、抗压强度、抗拉强度和变形参数,得出了煤波速的差异性及各向异性特征,分析了煤体结构是煤波速差异性的重要原因;对煤样波速与其力学指标进行了对比研究,得出了拟合公式,表明两者之间有很好的相关关系,为煤岩强度的确定提供了一种新的方法。
2.
Practics proves that there are close relations between coal structure and coal-gas outburst disasters.
实践证明煤体结构和煤与瓦斯突出灾害之间存在着密切的联系,准确判断煤体结构类型对于预防煤与瓦斯灾害的发生具有一定的指导意义。
3.
The results show that the development degree of cleats is the major controlling factor,second is the effective stress,exokinetic fractures and the coal structure,but the cleat development is controlled by coal rank and vitrinite content.
研究表明,控制煤层渗透性的主要地质因素为割理的发育程度,其次为有效地应力、外生裂隙和煤体结构等。
5)  coal texture
煤体结构
1.
From exploration and production information revealed in Ulan Minefield, the paper analyzed geological structure and coal texture of the minefield.
利用乌兰井田勘探和生产揭露的资料,分析研究了乌兰井田地质构造和煤体结构特征。
2.
Based on studies of structure and damage patterns in coal texture in the Sudong Mining area, investigations are made of the effects of the struture in this area on gas behaviour and hence on damage patterns in coal texture, including on gas reservoir-ing.
本文在研究宿东矿区构造特征及煤体结构破坏规律的基础上,分析了该地区构造对瓦斯流动、煤体结构破坏的控制作用及它们对瓦斯赋存的影响,并将宿东矿区分为五个构造区,分析每个区的赋存规律。
6)  coalbody structure
煤体结构
1.
Automatic drawing for column of coalbody structure based on DXF;
基于DXF的煤体结构柱状图的自动绘制
2.
On the basis of researching general gas controlling structural framework in Hancheng Mining Area,the constriction structure and stretch structure boundary of this area,and the characteristics and mechanism of controlling coalbody structure types,permeability and coalbed methane content are studied.
论述了韩城矿区总体构造控气框架及构造类型,分析了矿区的挤压与伸展构造边界,研究并揭示了不同构造类型对煤体结构类型、煤层渗透性能及煤层甲烷含量大小的控制特点与机理,为矿区煤层气勘探开发及评价预测提供了依据。
补充资料:岩体结构
      岩体内岩块的组合排列形式。岩体结构是由结构面和结构体2个基本单元组成。
  
  结构面 岩体内存在的不同成因、不同特性的各种地质界面的统称。如层面、节理、断层、裂隙等。结构面不是几何学上的面,而往往是具有一定张开度的裂缝,或被一定物质充填,具有一定厚度的层或带。按成因,结构面可分为:沉积或成岩过程中产生的层面、夹层、冷凝节理等原生结构面;构造作用下形成的断层、节理等构造结构面;变质作用下所产生的片理、片麻理等变质结构面;还有在外营力作用下形成的风化裂隙、卸荷裂隙等次生结构面。按规模(主要是长度),可将结构面分为5级:(几十至上百公里,十几公里,几公里,几米至几十米和厘米级)。它们分级或共同控制着区域、地区、山体、岩体的稳定性和岩块的力学特性。按性质,结构面可分为硬性(刚性)结构面和软弱结构面。硬性结构面的摩擦系数较大,多数没有充填物。软弱结构面的摩擦系数相对较小,延伸较长,且普遍充填粘土、泥、岩石碎块等物质。按物质组成和微结构形态,软弱结构面分为原生软弱夹层、断层和层间错动破碎带、软弱泥化带(或夹层)等 3种类型。某些充填泥质或粘土薄膜的大节理,也可构成软弱结构面。软弱结构面是岩体中最容易产生变形和破坏的部位。它常常成为危险的切割面、滑移面或构成有害的压缩变形带,导致岩体产生不允许的变形或失稳。因此,当工程岩体中存在软弱结构面时,除了要研究它们的几何形态、结合状况、空间分布和填充物质等方面外,还要特别注意对其物质组成、厚度、微观结构、在地下水作用下工程地质性质(潜蚀、软化)的变化趋势、受力条件和所处的工程部位,以及它们的力学性质指标等,进行专门的试验研究,并对其对岩体稳定性的影响作出定量的分析评价,提出工程处理措施。
  
  结构体 岩体受结构面切割而成的块体或岩块。随着结构面的分级,相应地结构体也可分级。视研究问题的不同,所选取的结构体等级是不一的。几级结构体综合叠加影响居多。由于不同级别、不同性质、不同产状以及不同发育程度的结构面的组合,结构体几何形态、单体大小可迥然不同。岩性的变化,也均关系着岩体的完整性、坚强性,从而决定着岩体的所属介质类型。
  
  岩体结构类型 按结构面和结构体组合形式,尤其是结构面性状,可将岩体划分如下结构类型:①整体块状结构,包括整体(断续)结构、块状结构和菱块状结构;②层状结构,包括层状结构和薄层(板状)结构;③碎裂结构,包括镶嵌结构、层状碎裂结构和碎裂结构;④散体结构,包括块夹泥结构和泥夹块结构等。
  
  岩体结构力学效应 结构对岩体力学性能的影响。岩体在力学作用和力学性质上有明显的结构效应,结构类型不同,力学效应不一。若岩体内存在着软弱结构面,则岩体结构力学效应主要受它控制,而且取决于它的充填度(即充填物在结构面内填充程度)、充填物成分与结构、充填物厚度以及结构面的起伏度(即结构面的起伏程度,常用起伏差即起伏最大值表示)。其中又以充填物厚度、充填度和起伏度最为重要。厚度大小与物质成分有关,一般颗粒越粗厚度越大;反之,颗粒越细,厚度越小。设充填物厚度为h,结构面起伏差为H,定义为充填度。起伏的结构面内充填物的充填度越大,结构面抗剪强度越低。当充填度大于200%左右时,结构面强度便稳定于一定的水平上;即与软弱充填物质的强度相当,这种关系称之为充填度的力学效应。
  
  结构面起伏度用起伏差及起伏角表示。起伏差的力学效应常与充填度相联系。起伏角α 为迎着受力方向结构面的仰角,又称为爬坡角。结构面具有爬坡角为α 的起伏时,其抗剪强度中的摩擦角φa将增加α ,即
  φaj
  φj为平直结构面的基本摩擦角。
  
  多组四级结构面(如节理)发育的岩体结构类型的力学效应主要取决于结构面密度(单位尺寸上的结构面数)、结构面产状(结构面出露的空间方位)及结构面组数 3个方面。岩体强度(变形参数也同样)随着岩体内含的结构面组数和结构体数增多而降低。结构面对岩体破坏影响有一定的范围。当结构面倾角大于或小于α min时,结构面对岩体破坏便没有影响。当结构面倾角介于和αmin之间时,岩体强度则随着结构面倾角而变化,在α=30°±时,出现强度最低值。在多组结构面发育的岩体,结构面对岩体力学作用和力学性质的影响,是各组结构面力学效应的叠加。显然,结构面组数越多,岩体力学性质越均匀化。
  
  整体结构岩体的力学效应规律基本上与节理化岩体相近。以单轴抗压强度为例,节理化岩体仅相当于岩块抗压强度的1/3至1/10,而整体结构岩体的单轴抗压强度可相当于岩块的1/2至1/3。
  
  

参考书目
   谷德振著:《岩体工程地质力学基础》,科学出版社,北京,1979。
   孙广忠著:《岩体力学基础》,科学出版社,北京,1983。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条