说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矿用液压管接头
1)  Hydraulic Tube Joint
矿用液压管接头
1.
Cold Extruding Technology of Outer Wear and Spherical Core of Hydraulic Tube Joint for Mine Use;
矿用液压管接头外套与球芯冷挤压工艺
2)  hydraulic hose connection
液压软管接头
3)  Hydraulic Tube Fittings(HTFs)
液压接头
1.
Hydraulic Tube Fittings(HTFs) is an important kind of parts in the Construction and Maintain Highway Machine.
液压接头是大型筑养路机械的一个重要组成部分,利用CAD/CAM/CNC技术实现接头的模块化设计和快速制造是保证其质量品质和加工效率的有效途径。
4)  steering hydraulic oil line connection
转向液压油管接头
5)  hose connector
软管接头(液)
6)  Hydraulically Expanded Joint
液压胀接接头
补充资料:管道用管
      管道运输所用的管子,是管道的主体部分。现代管道用管主要是钢管。建设一条长距离管道,其投资的30%左右,所用钢材的90%左右用于管子。由于海洋和北极区油、气田的开发,以及油品管道、天然气管道、固体料浆管道的输送工艺的发展,对管道的管材性能要求日益提高,制管工艺也日趋完善。
  
  概述  1865年建成第一条输油管道,用的是直径2英寸的熟铁管。从1887年开始,输油管道采用钢管。早期钢管是用锻制法对焊或搭焊制成的,后来出现了无缝钢管和电焊钢管。20世纪20年代末期,开始应用具有高抗拉强度的薄壁钢管。这种薄壁钢管大大地降低了管道单位长度的用钢量,并为制造大管径钢管和提高管道输送工作压力创造了条件。
  
  目前应用的管道钢管主要有螺旋缝钢管、直缝钢管和无缝钢管三种。螺旋缝钢管是由成卷的带钢在制管机上连续卷制焊接而成的,其纵向焊缝为螺旋形。这种制管工艺适用于制造薄壁钢管。直缝钢管主要用"UO"法制造,即将单张钢板在液压机上先冲压,使钢板的横截面成"U"字形,再经冲压成"O"字形,然后经焊接、胀圆成管,其纵向焊缝是一条直线。无缝钢管一般由铸锭或实心棒材先行穿孔,再经扩孔或拉拔而成;也可用挤压法,即在一步工序中直接由铸锭或实心棒材制成。无缝钢管一般用于较小口径高压管道,如输送成品油、液化石油气和乙烯等的管道。钢管的强度等级通常按美国石油学会 (API)标准划分,并按管材的屈服极限标注为X60、X70等。 X后面的数字表示管材规定的最低屈服极限,单位为千磅每平方英寸。这个管材标准是管道工程最通用的标准。1926年美国石油学会发布API-5L标准,其中包括一般碳素钢管。1947年发布API-5LX标准,其中包括X42、X46、X52三种管材。1964年发布API-5LS标准,将螺旋缝钢管标准化。1967~1970年四年中,API-5LS和API-5LX两项标准中,增加了管道建设所常用的X56、X60和X65等管材。
  
  管径的选择  管道输送中,管径的变化对压力降或输量的影响最大。确定合理的管径是管道设计最优化的主要指标之一。管径的选择一般是将输油(气)站和管道的建设费、操作费、维修费、折旧费,以及利润率和偿还期等因素,表示为管径的函数;计算各项费用之和对管径的一阶导数求出综合费用的最小值,从而确定合理的管径值。合理的管径随输油、气管道建站的费用上升而增大,所以加大管径以减少中间加压站数,可节约投资。管径与输量的0.25~0.4次方成正比,并随流体性质及不同时期或地区各项费用的不同而变化。近年来,管道消耗的动力和燃料费用上涨,管道直径在选择方面出现增大的趋势,油管和气管道目前最大直径分别达到1220毫米和1420毫米。
  
  管壁厚度的确定  管道钢管的壁厚 (d)通常根据管道运行的内压力(p)所引起的环向应力来确定,可按下式计算:
  
  
  
   
  式中D为管道直径;嗘为焊缝系数;[σ]为许用应力;C为壁厚裕量(包括腐蚀裕量和管材负公差等)。不同钢号和不同直径的管子存在壁厚的最小值,以保证其刚度。对受外载作用的大直径管、薄壁管、海洋管道和水下穿越管道还应进行稳定性校核。为了节省投资,长距离管道根据沿线压力变化,可分段选取不同钢号和不同壁厚的管子。海洋管道和水下穿越管道,由于存在着承受外压力和要求增加管重,以及不易维修等问题,所以管壁厚度须大于相同直径和内压的陆上管道。
  
  埋地管道纵向应力分析  由于纵向应变受土壤与管表面之间摩擦力的约束,埋地管道的直管段部分会产生以下三种纵向应力。①泊松效应应力:管子受内压时,其直径涨大而引起纵向收缩。收缩受到约束时,管道纵向即受到拉应力。其值为μσ,其中μ为泊松比(钢管μ值约为0.30);σ为环向应力。②温度应力:管道操作温度高于安装温度时,管子在投产后受热伸长。这一伸长受到约束时,管道纵向承受压应力。其值为ɑEΔT,其中ɑ为管材的热胀系数;E为弹性模量;ΔT为管道操作温度与安装温度的差值。如果操作温度低于安装温度,管道纵向承受拉应力。③内压引起的纵向应力:在管道的弯头或阀门处,由于内压作用产生纵向力。此纵向力传到管壁上,产生拉应力,其值为0.5σ。对于埋地管道,此纵向力随着离远弯头或阀门而逐渐被土壤的摩擦力所平衡。
  
  埋地管道纵向应力如下图。 A处有一清管器收发筒,管道经弯头入土,在弯头处破坏了土壤与管表面之间摩擦力的连续性,形成自由端。管道在B点受到土壤反力的约束。由B向C,土壤与管表面间的摩擦力逐渐积累,约束力逐渐增加,到C点时管子的纵向位移完全被约束住,即纵向位移为零。C点以后称为嵌固段;纵向应变不受约束的管段称为自由段;自由段和嵌固段之间称为过渡段,即图中BC部分。
  
  
  
  
  管道在嵌固段所受纵向应力σL最大,可按下式计算:
  
  
  
   
  式中负号表示压应力。一般对σL不必单独校核,但对σL和σ的组合应力,应按强度理论进行校核。
  
  管道断裂  管道在试压或运行中可能发生断裂破坏。输气管道或以气体为试压介质的管道发生的断裂现象危害最为严重。断裂的起裂与钢管的缺陷大小、管材和焊缝韧性的高低,以及应力水平等因素有关。为防止起裂,应保证管材和焊缝的韧性,对管道应严格进行无损探伤检查,以排除超过容许范围的缺陷。
  
  管道起裂后会产生两种裂纹失稳扩展,即脆性断裂失稳扩展和延性断裂失稳扩展。由于长输管道难以完全避免起裂,因此控制失稳扩展是非常重要的。
  
  脆性断裂发生在延性- 脆性转变温度以下。起裂时,脆性断裂的扩展速度同破裂面中剪切面积所占百分比有关。剪切面积所占百分比越大,则扩展速度就越低。破裂时,管中介质减压波的速度超过钢管的断裂扩展速度,则裂纹尖端的应力由于压力降低而迅速减小,从而可达到止裂。对于这种断裂,一般采用在某一温度下,对管道进行落锤撕裂试验(DWTT)加以检验。控制试件破裂面中剪切面积不低于某一百分比,也可达到止裂。1960年美国的一条直径为30英寸的管道,在气压试验时发生脆性断裂,撕裂长度达13公里。
  
  延性断裂发生在延性- 脆性转变温度以上。这种断裂能够扩展相当长的距离,预防这种断裂,要求管材的韧性大于某一最低值。这个最低值不是固定值,而是与钢管尺寸及应力大小有关;管径越大,应力越高,则最低值越高。随着管道直径的增加和工作应力的提高,管材往往难以达到要求的最低韧性指标,为此,近年来正在研究和使用各种止裂装置如止裂环。
  
  随着管道运输的发展,钢管材质获得非常迅速的改进。20世纪70年代以来,管材使用的普通碳钢已逐渐被掺入铬、钼、铌、钒、铜、铝和稀土元素的低碳合金钢取代,制管技术也广泛采用热处理工艺和控制轧制等级等新技术。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条