1)  Physical and chemical characteristics

1.
Lianghe turpentine relative density,refractive index,initial boiling point,distillation range size,optical activity and chemical composition as well as the softening point,acid value,unsaponifiable matter content,ethanol insoluble matter,ash,optical activity and chemical composition and other physical and chemical characteristics of rosin gum were studied.

2)  physical and chemical characteristics

3)  chemistry and mineralogy

1.
The basic chemistry and mineralogy of red mud discharged from Bayer and Sintering Combination process is studied such as pH,EC,dissolution and exchange of base ion and X ray analysis of minerals in Zhengzhou Alumina Refinery,covering fresh red mud,five year red mud and ten year red mud.

4)  physical and chemical characteristic parameters

1.
What the physical and chemical characteristic parameters of organic matters affect is the repulsion force between the organic matters and the membranes,while what the molecule weight of the organic matter affects is the siz.

5)  seawater characteristics

6)  brittleness culm mutant

 特征值和特征向量characteristic value and characteristic vector    数学概念。若σ是线性空间V的线性变换，σ对V中某非零向量x的作用是伸缩  ：σ（x）＝aζ  ，则称x是σ的属于a的特征向量  ，a称为σ的特征值。位似变换σk（即对V中所有a，有σk（a）＝kα）使V中非零向量均为特征向量，它们同属特征值k；而旋转角θ（0＜θ＜π）的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵，I是n阶单位矩阵，则称xI－A为A的特征方阵，xI-A的行列式 ｜xI－A｜展开为x的n次多项式 fA（x）＝xn－（a11＋…＋ann）xn-1＋…＋（－1）n｜A｜，称为A的特征多项式，它的根称为A的特征值。若λ0是A的一个特征值，则以λ0I－A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量：Ax＝λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念，J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程，特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证，宣告凯莱-哈密顿定理成立，即每个方阵A满足它的特征方程，fA(A)＝An－(a11＋…＋ann)An-1＋…＋(－1)n｜A｜I＝0。