说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 范性形变
1)  plastic deformation
范性形变
1.
Here,according to the classical theory of plastic deformation of the single crystal and slip characteristic of the face centered cubic with zincblende structure crystal,the reasons why the polygons came into being were clarified.
文中从经典的晶体范性形变理论和面心立方闪锌矿结构晶体所具有的滑移特性出发,阐明了出现在CZT(111)Cd面的多边形的形成机理,其内角必为60°或120°。
2.
The research review on plastic deformation and fracture of solids based on phvsicalmesomechanics is presented.
本文回顾了建立在物理介视力学基础上的固体范性形变与断裂的研究概况,从物理介现力学角度看,处于载荷下的固体是一个多层次的自治体系。
2)  plastic deformation
范性变形
1.
Because the austenitic plastic deformation is remarkable during fracturing, the tear ridge of dimple is very sharp.
微坑形核于铁素体片内,其尖细的撕裂棱是由奥氏体经受强烈的范性变形而形成的。
3)  plastically deforming region
塑性变形范围
4)  fracture toughness / plastic deformation
断裂韧性/范性形变
5)  deformation range
形变范围
6)  deformation band
变形带,变形范围
补充资料:范性形变
      材料所受的应力超过一定值时表现出的不可逆的永久变形,又称塑性变形。利用范性形变不仅可以把材料加工成所需要的形状,而且能使金属材料的性能得到改善(见金属塑性加工)。
  
  金属材料与范性形变相关的宏观力学性质,常常用拉伸实验的应力应变曲线来表征。金属范性形变的方式可有以下几种:
  
  滑移 单晶体的滑移 研究金属材料范性形变的微观过程,常借助于单晶体拉伸实验。金属晶体范性形变最主要的方式是滑移,也就是晶体的相邻部分在切应力作用下沿着一定的晶面和一定的晶体方向相对移动(图1a),这些晶面和晶向分别称为滑移面和滑移方向。滑移时在晶体表面出现一些线状痕迹,称为滑移线。实际上它们是滑移面两侧晶体相对移动在晶体表面上造成的台阶(图1b)。滑移面经常是原子的最密排面,滑移方向总是原子的最密排方向。一个滑移面和该面上的一个滑移方向合起来称为一个滑移系统。面心立方金属有四种等价的滑移面{111},每种滑移面包含三个不同的滑移方向<110>,共组成12个滑移系统(见晶体结构)。
  
  单晶体拉伸实验还表明,只有当某个滑移系统上的分切应力达到一定临界值时,该系统才开始动作。这个最低的应力称为临界分切应力。根据拉伸屈服应力和滑移系统相对于单晶体拉伸轴的方位,可以测出临界分切应力值,对于一般常见的纯金属,它们大约为10-4~10-5μ(μ是材料的切变模量)。晶体成分、温度和形变速度对临界分切应力都有显著影响。
  
  单晶被拉伸时,分切应力最先达到临界值的滑移系统首先开始滑移。但是随着滑移的进行,晶体受到附加力矩的作用发生已滑移系向施力轴方向靠近的转动,使其他各个滑移系统上的分切应力相应变化,以致更多的滑移系统参加滑移。
  
  与弹性形变不同,范性形变在晶体中的分布是不均匀的。滑移线现象清楚地说明,晶体的范性形变实际上仅由部分晶面上的滑移承担。不仅如此,即使在一个晶面上,滑移也是先从局部开始,然后再由小到大地逐步扩展滑移面积。从原子角度来看,滑移过程的机制最终归结为位错沿滑移面的运动(见晶体缺陷)。在此基础上可以想象,范性形变所需的力应该是用于克服位错产生、增殖和运动时所遇到的障碍,而形变速度则决定于单位体积中位错数量的多少,以及位错本身的运动速度。
  
  由于位错附近的原子已经从点阵的平衡位置移动出来,使位错前进一个原子间距,所要求原子的移动距离是很小的,而且随着位错的运动,在一些原子势能升高的同时另一些原子势能降低,总能量变化很小,所以晶体以位错运动的机制逐步滑移,比无位错完整晶体作刚性相对滑移所需的力要小得多;在后一种情况下,要经历滑移面上的全部原子同时向高能位置移动的过程。然而,位错毕竟要克服势垒才能前进,这种来源于晶体周期性结构的阻力称为点阵阻力。点阵阻力与原子间结合键的性质密切相关。金属晶体在范性性质上与共价晶体和多数离子晶体具有显著差异的根本原因,在于点阵阻力较小。晶体中的各种缺陷如点缺陷、其他位错、晶粒间界、第二相质点等,对位错的运动也产生阻力。提高金属抵抗范性形变的能力(宏观表现为提高流变强度),便是以合理地利用这些因素给位错的运动设置障碍作为主要手段。
  
  如果晶体中原来位错很少,或者原有位错因本身结构特殊或受到杂质原子的牢固钉扎而不容易运动,滑移的启动将比较困难,这是共价晶体和体心立方金属有上下屈服点现象(见金属力学性能的表征)的根源所在。与此相反,面心立方金属的屈服就比较顺利。
  
  宏观范性形变的开始,标志着晶体中已经出现了很多可移动的位错;然后随着变形的进一步发展,位错会大量的增殖。例如,强烈的范性形变可以使金属中的位错密度从107cm-21012cm-2的数量级。范性形变时,伴随着位错的运动、增殖,在它们之间发生复杂的相互作用,这些过程在单晶体应力-应变曲线上不同程度地反映出来。
  
  图2是面心立方金属单晶体典型的拉伸曲线,图中纵坐标为分切应力τ,横坐标为切应变γ。根据应变硬化系数的变化,可以把曲线分为三个阶段,依次称为易滑移区(Ⅰ)、线性硬化区(Ⅱ)和抛物线硬化区或动态回复区(Ⅲ)。
  
  以透射电子显微镜观察变形晶体为主要实验依据的理论认为,在阶段Ⅰ,晶体中位错密度低,分布均匀,它们可以沿自己的滑移面长距离运动而与其他位错干涉很少,所以应变硬化速率小。当变形进入第Ⅱ阶段的时候,位错密度增大到中等程度,并且逐步形成一种准均匀分布状态,即比较密集的大量位错相互缠结构成胞壁,把晶体分割成为内部位错密度相对稀疏的胞状组织(图3a)。在整个第Ⅱ阶段,随应变量的增大,位错继续增殖和运动,胞内不断形成新的胞壁,胞的尺寸跟着减小(图3b),但位错分布特征保持不变,从而使得应力与应变呈线性关系。最后胞的尺寸减小到胞内不再形成新胞壁,胞的尺寸基本稳定不变,于是便开始了第Ⅲ阶段。至于三个阶段的相对长短,则通过对位错的增殖、运动和相互作用的影响,与晶体成分、位向、初始位错密度和温度等因素有关。其他晶体的范性形变也表现出类似的过程。
  
  多晶体的滑移 在绝大多数情况下,金属以多晶体形式使用。多晶体是由大量称为晶粒的小晶体组成,每个晶粒的取向与其相邻晶粒不同,从而使金属在外力作用下在宏观上表现为各向同性体。多晶体范性形变时,一个晶粒的变形必须与相邻各个晶粒的变形相协调,否则材料的连续性将不能保持。理论分析指出,为了使多晶体通过滑移产生连续性不受破坏的变形,每个晶粒中至少要有五个独立的滑移系统动作。实验证明,即使在应变很小的情况下,各个晶粒也明显地在几个滑移系统上滑移,特别是在靠近晶界的区域。由于晶粒间界对滑移的阻碍作用,以及多个滑移系统的位错相互干扰,多晶材料的应变硬化速率比单晶体大许多倍,而且其应力-应变曲线不像单晶体那样表现出明显的阶段性。
  
  多晶体范性形变过程中,各个晶粒在形状改变的同时也发生转动。经过较大的形变之后,各个晶粒的某一晶体方向逐渐集中到施力轴方向上来,这种状态称为择优取向,得到的组织称为织构。金属的形变织构依照加工方式的差异具有不同的类型。多晶体中有了织构之后,其性能在一定程度上表现出各向异性。随材料使用场合的不同,这种各向异性可能有害,也可能有益。
  
  孪生 孪生是晶体范性形变的另一种重要方式。与滑移相似,孪生也使晶体产生切变。孪生切变同样沿着一定的晶面和晶向产生,这些晶面和晶向分别称为孪生面和孪生方向。孪生和滑移之间又存在着很大差别。滑移时,相对移动集中在少数原子面上,而每个面上的移动量可以达到点阵间距的很多倍。但是孪生形变时,切变却均匀地分布在孪生区的每一个原子面上,结果使相邻的两部分晶体恰好成为镜像对称关系(图4),称为孪晶,孪晶区中每个原子面的绝对移动量与该面到对称面的距离成比例,也就是所有相邻原子面的相对位移都相等,并且等于点阵间距的某个分数。
  
  
  以孪生方式变形一般比滑移变形需要更大的切应力,所以只有在滑移不容易进行的情况下,才产生孪晶。例如密排六方金属由于滑移系少,在取向不适于滑移的情况下会产生孪晶。体心立方金属在低温或形变速度很高的情况下容易产生孪晶。面心立方金属只有在极低的温度下变形才有可能产生孪晶。孪晶往往以极快的速度产生,这时,由于变形突然增加,会在应力-应变曲线上引起锯齿状的波动。孪晶的产生过程也可以用位错运动机制来说明,不过,由于孪晶带来晶体取向的改变,产生孪晶的位错应该是不全位错。
  
  其他范性形变方式 扭折 晶体可以通过扭折发生不均匀的范性形变,图5是镉晶体受轴向压缩时产生的扭折带,带中晶体取向有较大的变化并有点阵的弯曲。
  
  定向扩散形变 在温度足够高同时又有应力加在晶体上时,在应力场和热激活的作用下,填隙原子和比基体原子大的代位溶质原子将从晶体的受压缩部分向膨胀部分迁移;相反,空位和比基体原子小的代位溶质原子将从晶体的膨胀部分向压缩部分迁移,大量原子迁移的结果可引起宏观变形,并称为定向扩散形变。对于金属晶体,在大多数情况下扩散形变与空位定向流动相关,空位一方面在某些位错、晶粒间界和晶体表面处消亡,同时又可以比较容易地在另一些位错、晶粒间界和晶体表面处产生,从而保持不断的流动(图6),而空位流动的效果便相当于反向的原子流动。
  
  
  由于位错可以充当空位和填隙原子的源泉及其尾闾(sink),它们将不断地在位错线上产生和消亡,结果导致位错多余半原子面的伸长或缩短,两者都使位错从自己原来的滑移面攀移出来。当位错在滑移面上遇到障碍的时候,位错攀移可以帮助它们绕过障碍,继续滑移更远的路程,这种机制在高温蠕变变形中起着重要作用。
  
  晶界滑动 高温下多晶体晶粒间界处的结合削弱,相邻的晶粒可以在切应力作用下沿着晶粒间界相对滑动。晶界滑动速度缓慢,因此,也是在蠕变条件下,即高温度和低应力的情况下才显得重要。晶粒尺寸越小,即单位体积中晶界面积越大,晶界滑动对总应变量的贡献越大。一般需要在晶粒内部有某些位错运动来配合晶界滑动,这是由于大多数晶粒形状不规则,为了在发生晶界滑动时不出现裂隙,晶粒形状必须作相应的变化;位错运动是满足这种要求的主要途径,扩散形变也会有所帮助。在某些情况下,材料可以通过晶粒之间的相对滑动发生高达1000%的形变而不破裂,造成所谓的超塑性,这就要求晶粒十分细小,变形温度和变形速率的限制也较严。有些合金在相变温度附近形变时也出现超塑性现象。
  
  如果在形变同时来得及进行回复和再结晶,从而造成应变硬化的消除和范性形变能力的恢复,也可以使材料获得高的变形程度。实践中广泛采用的热加工工艺主要是利用了这种过程。
  
  非晶态材料的范性形变 与晶体完全不同,这依赖于原子或分子的扩散以及它们的相对移动。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条