说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 化学反应动力学参数
1)  chemical reaction kinetic parameters
化学反应动力学参数
2)  reactive kinetic parameter
反应动力学参数
1.
A kind of method for solving reactive kinetic parameters;
求解反应动力学参数的一类方法
3)  chemical kinetic parameter
化学动力学参数
4)  electrochemical reaction parameters
电化学反应参数
5)  back analysis of kinetic parameters
动力学参数反演
6)  chemical reaction dynamics
化学反应动力学
补充资料:化学反应热力学


化学反应热力学
chemical thermodynamics

化学反应热力学ehemieal thermodynamies利用热力学基本原理研究化学问题的学科。物理化学的一个分支。它的主要研究内容包括:①化学过程及与化学过程密切相关的物理过程中的能量效应,即过程的放热或吸热规律;②化学变化的方向和限度,建立化学平衡和相平衡的理论。 18世纪末到19世纪初,有关蒸汽机的研究和发明导致了热力学的产生。热力学就是研究热和功转换的规律,它由3条基本定律构成,把这些定律应用于化学领域就产生了化学反应热力学。 热力学第一定律1842年,J.P.焦耳(J oule)由大量的实验总结出,热量与机械功的转化具有一定的当量关系,1卡热量相同于4.184焦耳的功,这就是著名的热功当量。根据热功当量,人们证实能量在转化过程中保持数量不变,此即能量不灭原理,运用于热力学体系则称为热力学第一定律。用数学表达式则为 Q一W一△U式中Q为过程中系统的吸热量,W为系统所做的功,△U为系统内能的变化值。 热力学第二定律随着热功当量的测定,R.J.E.克劳修斯(ClausiuS)在N.L.5.卡诺(Carnot)工作的基础上提出了热力学第二定律,即不可能把热从低温物体传到高温物体而不引起其他变化。其实质是说明热力学体系的过程是有一定的方向性。 克劳修斯在定义出嫡S之后得到了一个不等式△s)习琴 1 11式中T为热力学温度。这个不等式实际上就是热力学第二定律的一种表达式,它比从经验出发的叙述不仅更为概括而且原则上可以定量计算。判断所设想的过程能否发生以及可逆与否,只要比较所设想过程的△S和。占Q‘、*‘甫,、,;。二.、拈*、。、二卫里二、‘公习.兴黔之值就可以得到结论。当△S>名召器乙时,所设州Ti~巨毋“’J…’,~~‘~一~一丫式”‘’“’一.,:,二*。.,冲*、。一二旦至二时‘二撇特想的过程有可能发生,当△S=不学生时,为可逆过,、。‘。/。阅‘、:、二。_二、,。、,程;当△S<习李署二时,过程是不可能发生的。,Ix,习“以、甲Ti”J’一阵~”一’切~~一”‘。 热力学第三定律在绝对零度时,排列得很整齐的完美晶体,其嫡值为零。 依据这条定律,各物质的嫡值可由下式来求得$一f,rds一f馋d二 JO JOJ通过实验测得不同温度下的肠(等压热容),以G/T对T作图,用图解法得到摘值。 热力学状态函数之间的关系及应用热力学中常见的5个状态函数为:烙(H)、自由能(G)、功函(F)、内能(的和摘(S)。它们之间的关系可表示为 H二U+尸V F一U一7万 G=H一7污 对于绝热过程:△S>0,则此过程可以发生,并为绝热不可逆过程;△S一0,则此过程可以发生,并为绝热可逆过程;△S<0,则此过程不可能发生。 对于一个恒温过程则可以由始态和终态功函F的减少量所做的功来确定:一△F>W,此过程可能发生;一△F~W,可能发生可逆变化;一△F0,过程不可能发生。 特点和局限性热力学的方法是宏观的方法,只需知道被研究对象的起始状态和最终状态及过程的外界条件,就可进行相应的计算,它不依赖于物质的微观结构,也不需知道过程的微观历程,应用上比较简易方便,这是它的特点。也正是这个特点,决定了它不能从分子原子的微观角度说明变化发生的原因。此外,对过程的快慢也不能预测,这是它的局限性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条