说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 全反射X射线荧光谱学
1)  Total reflection X-ray fluorenscence spectroscopy
全反射X射线荧光谱学
2)  Total reflecton X-ray fluorescence spectrometry
全反射X射线荧光光谱
3)  total reflection X_ray fluorescence spectrometer
全反射X射线荧光光谱仪
4)  Total reflectiion X-ray fluorescence spectroscopy
全反射X射线荧光光谱分析
5)  total reflection X-ray fluorescence (TRXRF) spectrometer
全反射X射线荧光光谱仪(TRXRF)
6)  total reflection X-ray fluorescence spectrometric analysis
全反射X射线荧光光谱法
补充资料:X射线天文学
      用X射线(波长0.01~100埃的电磁辐射)研究天体的一门学科。
  
  发展简况  天体的 X射线受到地球大气的严重阻碍,主要利用卫星进行探测。因此,虽然 X射线的探测始于二十世纪四十年代,但是,成为一门学科,则是人造地球卫星上天以后的事。早期的观测工作集中于太阳的研究。自从1962年 6月18日美国麻省理工学院研究小组第一次发现来自天蝎座方向的强大X射线源以后,非太阳X射线天文学进入一个新的发展阶段。七十年代以来,发射了专门研究 X射线的天文卫星(如小型天文卫星系列),观测到许多先前不知道的宇宙X射线源,使X射线源的数目从十几个猛增到一千多个。
  
  太阳X射线天文学  太阳X射线的探测,主要弄清了它的三个成分:日冕高温等离子体的连续辐射和其他谱线辐射,构成了X辐射宁静成分;温度在 106K以上的日冕凝聚区的超热等离子体所产生的辐射,构成 X辐射的缓变成分,在日面上呈现为X射线亮斑(图1)。太阳活动区所产生的X射线爆发,构成了X辐射突变成分。在日面上呈现为X射线耀斑(图2)。
  
  过去十年,太阳X射线测量的一个重要方面,是探测X射线爆发的能谱和偏振,着重于研究耀斑脉冲阶段的高能天体物理过程,如高能粒子的起源、传输、能量的转化以及发射的性质等等。目前已初步确立了 X射线辐射源的模型,这对耀斑物理的研究有重要价值。另外,已经研究清楚,太阳 X射线在形成地球电离层的过程中起重要作用。
  
  X射线望远镜已具有角秒量级的高分辨本领,这就为深入研究太阳现象创造了条件。X射线耀斑和X射线亮斑的发现大大增进对太阳活动区的研究和认识。而 X射线冕洞的发现,更是太阳物理学的一项重大成果(图3)。现在已经查明,X射线冕洞就是高速太阳风的风源,也就是日地关系研究中长期没有弄清楚的 M区。冕洞物理提出了许多有价值的课题,如冕洞的形成,高速太阳风源的成因等,特别是冕洞的刚性转动倾向迄今还未找到满意的解答。
  
  非太阳X射线天文学  十多年来,非太阳X射线天文学发展特别迅速,取得重大的突破。在已发现的 X射线源中,有多种不同类型的客体,而目前只有少量得到确切的光学证认。在星系和星系团中的强射电星系(如室女座 A等)和活动的塞佛特星系(如 NGC1275、NGC451等)均为著名的X射线源。室女星系团的最强X射线源延伸达1°,星系M87位于其中,估计每个星系的平均 X射线光度在1044尔格/秒以上。作为河内的展源,超新星遗迹(如蟹状星云、仙后座A等)也是一类重要的X射线源(见X射线展源)。有些X射线源,光学证认为双星的成员星,如半人马座X-3、武仙座X-1、天蝎座 X-1、天鹅座X-1等等,它们的成员星之一是X射线星。按照现代 X射线双星理论,猜想这种X射线星是中子星或黑洞。
  
  大量射电脉冲星的发现,诱导人们去探索 X射线脉冲星的存在。随着新的探测技术的发展,已有可能发现后一种脉冲星。1969年发现蟹状星云脉冲星PSR0532的X射线脉冲辐射,它和对应的光学脉冲几乎有完全相同的周期。后来又发现了其他类型的 X射线脉冲星。这些发现对双星演化过程的研究很有价值。
  
  X射线天文观测的另一类课题是关于弥漫X射线背景测量。几乎是各向同性的宇宙X射线背景辐射的发现,被认为是六十年代X射线天文学的重大成就之一。
  
  1974年以后的几年中,英国"羚羊"5号(Ariel-5)及其他卫星相继发现了宇宙X射线爆发和一批暂现X射线源,从而在宇宙中又揭示了一批前所未知的现象和新型X射线源,被公认为七十年代天文学的重大发现。这些过程所释放的能量之大,能量释放速度之快,贮能密度之高以及奇特的再现周期,迄今仍然是现代高能天体物理学的重大研究课题。
  
  探测仪器  X射线天文学所采用的探测仪器随X射线光子能量不同而有所不同。探测软 X射线用薄窗正比计数器,常用铍做窗材料,铍窗的密封性能好,能保证仪器工作稳定,但铍窗的厚度仍然限制着计数器对更低能量X射线的灵敏度。探测极软X射线,要使用有机薄膜窗的计数器,但有机薄膜窗的气体密封性不好。近年来在空间探测中发展了一种自动调节的流气技术,保证计数器管内维持一定气压,使仪器的响应处于稳定可靠状态。不过它的制造工艺和使用条件都较为复杂。
  
  在非太阳X射线源的探测方面,为提高灵敏度,常常需要大面积的薄窗正比计数器。这种仪器的制造技术近年来发展较快。美国小型天文卫星"自由号"曾使用面积达840平方厘米、厚仅50微米的铍窗正比计数器。
  
  随着X射线能量的升高,正比计数器将失去作用,它的探测上限约为60千电子伏。更高能量的探测,则须用闪烁计数器。
  
  正比计数器和闪烁计数器本身没有任何成像和定向功能。为了证认各种 X射线源和精确定出它们在空中的方位,必须在计数器前部加上准直器。这种准直技术近几年发展特别迅速。目前广泛使用的准直器类型有丝栅型准直器、板条型准直器和蜂窝状准直器等。前者多用于软X射线波段,后两种用于硬X射线波段。此外,还有闪烁体构成的主动式准直器。
  
  实验 X射线天文学的一个突出成就,就是将掠射光学原理应用于X射线天文,使大面积X光聚焦成像技术成为现实,制成了真正有研究价值的高分辨本领的 X射线望远镜。它提供了把 X射线的探测区域扩大到更遥远的宇宙深处的可能性。
  
  X射线天文学从诞生时起,在近二十年的短暂时间内,发现了一系列前所未知的新型天体,获得光学天文和射电天文无法得到的天体信息,大大地扩展了天文学的研究领域。X射线天文学所显示的独特威力,使得它在当代空间天文学中处于特别重要的地位。
  
  

参考书目
   G. Setti and M. J. Rees, Non-Solar X-ray and Gammaray Astronomy,IAU Symp.,No.37,p.352,1970.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条