说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 无轴承永磁同步电机
1)  bearingless permanent magnet-type synchronous motor
无轴承永磁同步电机
1.
Suspension principle of rotor and decoupling control for bearingless permanent magnet-type synchronous motors;
无轴承永磁同步电机转子悬浮原理与解耦控制
2.
The bearingless permanent magnet-type synchronous motor is a strong-coupled complicated nonlinear system.
无轴承永磁同步电机是一个强耦合的非线性复杂系统,实现无轴承永磁同步电机的线性化解耦控制,是无轴承永磁同步电机稳定运行和走向实用化的关键。
3.
To realize the radial displacement sensorless operation for a permanent magnet type bearingless motor(PMBLM) in the dynamic process,a method of using the flux of bearingless permanent magnet-type synchronous motor(BPMSM) to calculate rotor radial displacement was proposed,detective system of rotor radial displacement was set up and simulation was carried out.
为了实现无轴承永磁同步电机无径向位移传感器运行,提出了一种利用磁链推算无轴承永磁同步电机转子径向位移的方法,构建了基于此算法的无轴承永磁同步电机转子径向位置检测系统并对其进行了Matlab/Simulink仿真验证。
2)  bearingless permanent magnet synchronous motor
无轴承永磁同步电机
1.
The bearingless permanent magnet synchronous motor(BPMSM) is an innovational type of motor,which has all excellence of magnetic bearings.
无轴承永磁同步电机是具有磁悬浮轴承优点的一种新型电机;在阐述了无轴承永磁同步电机工作原理基础上,采用转子磁场定向控制策略,推导了无轴承永磁同步电机径向悬浮力和电机旋转部分数学模型;根据无轴承电机解耦控制的要求设计了无轴承永磁同步电机转子磁场定向矢量控制系统,并以数字信号处理器TMS320LF2407为核心,研制了矢量控制系统的硬件和软件。
3)  BPMSM
无轴承永磁同步电机
1.
A decoupling control approach based on dynamic inverse system theory has been developed for the bearingless permanent magnet synchronous motor(BPMSM),which is a multi-variable,nonlinear and strong-coupled system.
应用多变量非线性控制逆系统理论,对无轴承永磁同步电机的多变量、非线性、强耦合的控制对象进行了动态解耦控制研究;介绍了逆系统理论,阐述了无轴承永磁同步电机径向力的产生机理,建立了转矩力和径向悬浮力状态方程,分析了基于逆系统理论解耦控制的可行性,推导出基于逆系统理论的无轴承永磁同步电机转矩力与径向力之间的动态解耦控制算法。
4)  bearingless permanent magnet synchronous motors (BPMSM)
无轴承永磁同步电动机
1.
Nonlinear L2 robust control for bearingless permanent magnet synchronous motors (BPMSM) was presented.
对无轴承永磁同步电动机提出非线性L2鲁棒控制。
5)  permanent magnetism bearingless synchronous motor (PMBLM)
永磁无轴承同步电机
6)  surface permanent magnet bearingless synchronous motor
表面贴装式永磁无轴承同步电机
补充资料:稀土永磁电机的现状与趋势
1.完善和发展了稀土永磁电机的理论研究体系
  稀土永磁电机性能优异,结构特殊而多种多样,传统电机的设计理论、计算方法和设计参数已不能适应设计研制高性能电机的要求,近年来,运用现代设计方法完善和发展了稀土永磁电机的设计理论、磁路结构、计算方法,检测技术和制造工艺。在此基础上建立了工程实用的电磁设计计算程序和计算机辅助计算软件包,包括电磁场分析计算,电感参数计算、动态性能仿真和优化设计。
  2.在钕铁硼永磁电机防失磁的技术关键问题上有所突破
  钕铁硼永磁在高温情况下退磁曲线不能保证是直线,在永磁同步电动机中,起动、刹车或故障情况下电流激增,有可能发生不可逆退磁。
  在最大电流时永磁体的工作点必须设计在高于最大工作温度时退磁曲线的膝点。用传统的计算方法计算的最大退磁工作点是平均值,用有限元法计算最大退磁情况下各局部工作点。
  3.开发出性能价格比高的新样机
  抽油机用永磁电机具有高起动转矩,在实际应用中可替代比它大2个功率等级的异步电动机。节电率大于20%。
  1120 KW永磁同步电动机(是目前世界上功率最大的异步起动高效稀土永磁电机)效率高于96.5%。(同规格电机效率为95%),功率因数0.94,可以替代比它大1~2个功率等级的普通电动机。
  用JS138-4旧异步电动机仅改变转子而成的300KW永磁电机,效率为94.7%,功率因数为0.966。与改制前相比,有功节电率为7.2%。
  超高效永磁同步电动机的效率比美国预计于2007年生产的最高效电动机的效率高2-4个百分点,而且小一个机座号。
  随着永磁材料的迅速发展,电力电子和控制技术的进步,稀土永磁电机将越来越多地替代传统电机,应用前景非常的乐观。稀土永磁电机的设计和制造工艺尚需不断地进行创新,电磁结构更为复杂,计算结果更加精确,制造工艺更加先进适用,需运用多学科理论和系统工程进行优化设计,提高性价比,促进电机学科和行业进一步发展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条