1)  flutter derivatives

1.
Identification of flutter derivatives of full-bridge aeroelastic model;

2.
Simulations for identification of flutter derivatives of bridge section using the coupled-forced-vibration method;

3.
The identification of flutter derivatives for 2-DOF and 3-DOF bridge sectional model applying the forced vibration method;

2)  flutter derivative

1.
Based on static dynamic force test of segmental models of Chongqing Chaotianmen Bridge,dynamic force test,the varying law of the coefficients of three-dimensional static component forces with the changing of attack angles and properties of main girder and main arch,and flutter property of main girder are obtained,and eight flutter derivatives of main girder are recognized.

2.
It is found that the flutter derivatives are dependent from the amplitude and frequency in the practical range of wind speed.

3.
Model stiffness and support location effect on flutter derivatives is studied in bridge deck section dynamical test.

3)  flutter derivatives

1.
Testing study of determination of flutter derivatives by taut strip model in smooth flow;

4)  generalized flutter derivative

1.
The concept of "generalized flutter derivative"is proposed,and its physical meaning is illustrated.

5)  Bridge flutter-derivative benchmark study

6)  flutter parameters

1.
Based on the flutter theory of flat plate,a new optimization model that involving twin undetermined flutter parameters is proposed.

 颤振flutter   弹性结构在均匀气（或液）流中受到空气（或液体)动力、弹性力和惯性力的耦合作用而发生的大幅度振动。它可使飞行器结构破坏，建筑物和桥梁倒塌。发生颤振的必要条件是：结构上的瞬时流体动力与弹性位移之间有相位差，因而使振动的结构有可能从气（或液）流中吸取能量而扩大振幅。最常见的颤振发生在机翼上。当机翼受扰动向上偏离平衡位置后，弹性恢复力使它向下方平衡位置运动，同时产生作用于机翼重心的向上惯性力，因机翼重心在扭心之后，惯性力产生对扭心的力矩而使机翼迎角减小，引起向下的附加气动力，加快机翼向下运动；当机翼运动到下方极限位置而返回向上运动后，出现相反的情况。整个过程中，空气动力是激振力，与飞行速度的二次方成正比；同时还有空气对机翼的阻尼力，与飞行速度成正比。低速时，阻尼力占优势，扰动后的振动逐渐消失，平衡位置是稳定的。当飞行速度超过颤振临界速度后，激振力占优势，平衡位置失稳，产生大幅度振动，导致机翼在很短时间内破坏。防止机翼颤振的最有效方法是使机翼重心前移以减小惯性力矩。设计飞机时，要在风洞中进行模型试验以确定颤振临界速度。飞机研制成功后，还需进行飞行颤振试验。