1)  water velocity
水速
2)  water absorption speed
吸水速度
1.
Study on water absorption speed of superabsorbent polyacrylamide/mentmorillonite composite;
高吸水复合材料吸水速度的研究
3)  dehydration rate
脱水速度
1.
Analysis of influence factors on ultra heavy oil dehydration rate;
影响超稠油脱水速度的因素分析
4)  flooding rate
注水速度
1.
The research results show that increasing flooding rate and flushing time lead to fine particle migration in the unconsolidated reservoir and the permeability increase of the reservoir.
研究结果表明,注水速度和冲刷时间的增加会导致胶结疏松的储层内部微粒运移,使储层渗透率升高;由于生产压降增大,渗透率降幅平均达到23。
5)  moisture extraction rate
析水速率
6)  the rate of output water
出水速率
1.
In this pa per consuming quantity of diols and the rate of output water were studied by the way of codistillation and one-step feeding.
用共沸蒸馏、一步投料的方法,对二元醇过量的质量及其出水速率进行了初步的研究。
参考词条
补充资料:水果速冻
      以低温速冻方式保藏水果的加工方法。水果冻结后,内部的生化过程停止,由于所含水分大部分已冻结成冰,微生物无生活所必需的水分,且低温也阻碍了微生物的活动和繁殖,因而水果能得以长期保藏。速冻水果能基本上保持水果原有的自然形状和风味;在贮藏期间其色、香、味和维生素没有显著变化。速冻水果绝大部分用于制作其他食品,如果酱、果冻、蜜饯、点心、果汁汽水和冰淇淋等。水果速冻从加工、保藏到运输、销售都要有制冷装置(冷藏链),总的能源消耗较其他加工方法多,因而产品成本高。
  
  速冻过程及其原理  冻结水果过程可分为 3个阶段:第一阶段是由水果的原来温度降低到开始冻结的温度;第二阶段是使水果的汁液冻结;第三阶段是将水果从冻结温度降低到所需的保藏温度。冻结是由表面逐渐向内层进行的,当制品的热中心温度(在均质化和各向同性的物质内,热中心落在制品的几何中心上)等于或不高于贮藏温度3~5℃时,就可认为已完成冻结。在水果的汁液中,除含有大量的水分外,还溶有钾、钠、钙、镁、铁等多种无机盐和蛋白质、脂肪等有机质,组成胶体状态的溶液,其冰点低于纯水。多数水果的最高冻结点在-0.8~-2.5℃(表1 )。当水果的温度降低到其冰点时,水分便部分由汁液中分离析出,开始生成冰结晶。随着水分逐渐从汁液中析出冻结成冰结晶,汁液的浓度逐渐增大,其冰点也随之下降。当冰的冰结温度降低到低溶冰盐共晶点(约在-55℃以下),便把最浓的汁液全部冻结,此时,胶体变性,可逆性消失,不利于产品的复原。因此,冻结温度应不低于胶体的可逆性界限(通常在-18~-25℃),水果的冻结水量通常控制在70~80%。多数水果在-3℃左右开始结冰,当冰结温度降至-7℃时,约有50~60%的水分冰结,即在-3~-7℃的温度区间,冰结晶大量形成,称之最大冰结晶生成带(表2 )。水果进行速冻时,能迅速地通过最大冰结晶生成带,大部分水分在果肉细胞内形成数量多而极微细的冰结晶,物理-化学变化不太强烈,对果肉组织的损伤程度极微,在冰融化时,水分可以充分的渗入果肉组织中,使果肉组织能较好复原,得到较高质量的制品。一般认为:零售包装的冻结速度(制品内冰锋前进的速度)应高于0.5cm/h,单体速冻产品的冻结速度应高于5cm/h。  速冻方法及其设备  原料经预处理后,直接进入冻结系统。根据产品用途和冻结设备,可以采用包装前冻结或包装后冻结。冻结系统有非连续式(批量式)、半连续式和连续流水线式。商业上所采用的冻结设备有:①吹风式冻结器,主要采用流体化冻结器(盘式或带式)和固定式吹风冻结器;②金属表面接触式冻结器,主要采用卧式平板冻结器和颗粒冻结器;③液体蒸发式冻结器,主要采用卧式液氮冻结器。冻结系统的选择应从产品质量与经济性考虑。冻结系统对制品质量的影响有冻结速度和干耗量。
  
  采用包装前冻结方法,大多选用流化床实现水果的单体速冻,所得产品是松散的。在-26~-30℃气温下,制品放置厚度为30~40mm时,对蓝莓、木莓、草莓、樱桃的冻结时间只需4~15min。液氮冻结法的冻结速度快,冰的结晶极小,特别适用于组织软嫩的浆果。生产时,水果被输送带传入速冻隧道,经液氮喷淋,立即冻结。例如草莓从20℃降到-18℃的冻结时间只需2min,草莓的组织状态变化很小,经90min的解冻后,汁液损失量比吹风的单体速冻产品要低50%,但成本较高。
  
  包装后冻结的方法适用于:①散装冻结加糖的水果;②冻结像木莓类的软质水果和草莓类过熟的水果;③加糖浆或加糖冻结的零售包?啊6辰嵯低扯嗖捎梦允铰疗桨宥辰崞鳎ㄈ粲们恐蒲罚桨灞砻嫖露任?-4℃,包装厚度25mm时,冻结时间约为30min)和固定式吹风冻结器(空气温度通常为-38~-40℃,风速4~7m/s)。
  
  水果速冻加工过程 速冻水果的一般加工过程为:原料选择、清洗、分级、整形处理(如去皮、去核、切分等)、加糖、加维生素 C等保护剂、包装(或散装)、速冻、冻藏。
  
  水果原料的特性对成品的质量起着决定性的作用。用于冻结的水果,应适合冻结保藏,要求在解冻以后,能基本保持原有组织状态和脆度,且成熟适度,外观整齐,不易氧化变色。常用的水果有桃、杏、梨、苹果、李、草莓、木莓、甜瓜、樱桃、芒果、菠萝、猕猴桃等。加糖是为了防止冻结时水分的大量结冰而破坏水果的组织,并防止空气的氧化作用,削弱氧化酶的活力,避免果肉变色,是保持水果质量的重要步骤。用2~4%的维生素C溶液浸泡水果几十分钟后再行冻结,可使速冻水果的色泽近似新鲜水果。在进行包装或单体速冻以前,应当用震荡除水装置滴干。水果的pH值为2.5~5.0,因此预处理设备要求用不锈钢制作。
  
  

参考书目
   J. G. Woodroof, B. S. Lun, Commercial Fruit Processing, The AVI Publishing Company, Inc.,USA,1975.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。