1)  mechanization
力学编排
2)  mechanical
力学
1.
Dielectric and mechanical properties of TiB_2/ZrO_2 composites;
TiB_2/ZrO_2复合材料介电及力学性能研究
2.
The effects of sintering temperature and holding time on mechanical and microwave dielectric properties of samples were studied.
以热压烧结法制备摩尔分数为3%的氧化钇部分稳定氧化锆(yttria partially stabilized zirconia,Y-PSZ)陶瓷,研究了不同烧结温度和保温时间对材料力学和介电性能的影响。
3)  mechanics
力学
1.
Research of micromechanics model of short radom-oriented fibre reinforced composite materials;
乱向短纤维增强复合材料细观力学模型探讨
2.
Adaptation of emphysema rabbit diaphragm muscle mechanics to chronic ultra-low frequency electrical stimulation and chronic physiological frequency electrical stimulation;
肺气肿兔膈肌力学模式对慢性超低频复合生理频率电刺激的适应性改变
3.
Anatomy and mechanics of ankle joint and treatment of its fracture;
踝关节解剖及力学与踝关节骨折的治疗
4)  Dynamics
力学
1.
The reform of classroom-teaching methods of physics is the key to the reform of dynamics teaching.
力学课堂教学方法的改革是力学教学改革的关键。
2.
The technical difficulties and theory of the new autonomous recovery technology are analyzed,including dynamics,control,and navigation,etc.
基于当前AUV技术的发展形势及应用领域阐述了AUV回收的背景及意义,介绍了国内外AUV回收技术现状,并主要针对最新的自主回收技术,分析了其相关力学、控制以及导航等关键领域中的技术难点和理论方法,概括了相应的解决思路,探讨了AUV回收技术的发展趋势。
5)  kinetic and thermodynamics
动力学和热力学
1.
The adsorption equilibrium and adsorption kinetic and thermodynamics of methylene blue on the adsorbent were studied.
研究了该种吸附剂对亚甲基蓝的吸附过程,并对其吸附平衡、吸附动力学和热力学进行了研究。
6)  thermodynamics and kinetics
热力学与动力学
1.
The effect of magnesium on thermodynamics and kinetics of oxidation of melted Al-Mg-Si alloy, the microstructure and properties of Al2O3/Al-Mg-Si composites were studied in this paper.
研究了镁对Al-Mg-Si合金熔体氧化热力学与动力学的作用,以及对Al2O3/Al-Mg-Si复合材料组织与性能的作用。
2.
Crystallization behavior of amorphous Mg65Cu25Y10 alloy is reviewed in this paper, including the effect of the charac-teristic of DSC curve, preparation condition and alloying on Crystallization behavior, and the thermodynamics and kinetics of crystalline forming.
综述了Mg65Cu25Y10非晶合金的晶化行为,包括DSC曲线的基本特征、制备状态和合金化对晶化行为的影响以及晶体相形成的热力学与动力学;有研究表明,旋淬Mg65Cu25Y10非晶条带的脆性可能是由于Mg2Cu金属问化合物的纳米颗粒弥散分布的结果。
参考词条
补充资料:量子力学中的力学量和算符
      在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r0或动量具有某一确定值p0的几率却是完全确定的。量子力学中力学量的这些特点是经典力学中的力学量所没有的。为了反映这些特点,在量子力学中引进算符来表示力学量。
  
  算符是对波函数进行某种数学运算的符号。在代表力学量的文字上加"∧"号以表示这个力学量的算符。如坐标算符、动量算符。当粒子的状态用波函数 Ψ(r,t)描写时,坐标算符对波函数的作用就是r乘 Ψ(r,t),动量算符对波函数的作用则是微分:
  
  
  可简单地写为
  
  其他有经典类比的力学量都是r和p的函数,在量子力学中也是算符和的相应的函数。例如粒子绕原点的角动量在经典力学中是L)=r×p,因而在量子力学中角动量算符是
  
   。
  又如,在势为U(r)的力场中运动的粒子能量算符(也称哈密顿算符)为
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。