说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 点动
1)  spot driving
点动
1.
This paper presented the objectoriented designing method to design hand pulser and spot driving function module.
提出了手轮和点动集成模块的全新设计方法面向对象设计 ,给出了面向对象的手轮和点动的实现框
2)  moving-point
动点
3)  moving point
动点
1.
Selection of moving point and moving coordinate in composite motion of points;
点的合成运动中动点和动系的选择
2.
A Class of Inequality Involving a Moving Point inside Triangle;
涉及三角形内一动点的一类不等式
3.
It is expounded in the paper that the wording of the "Direct Choose"and"Reversed Choose" of the moving point and moving reference system is unscientific It is also illustrated that in the study of problems of kinematics of mechanism it is not proper to restrict the choice of moving point at the contact of two rigid bodie
论述了有关动点和动系的“正选”与“反选”的提法是不科学的 ,指出在研究有关的机构运动学问题时 ,把动点的选取局限在两刚体的接触点处是不妥当的。
4)  mobile point
动点
1.
By using one of Klamkin s Inequalities,a weighed geometric inequality in triangle with related to a mobile point is given.
运用三角形惯性矩不等式,建立涉及三角形平面上一动点的一个加权几何不等式且导出若干新的不等式。
5)  point-to-point motion
点对点运动
1.
Third-order profile planning algorithm and implementation for high accuracy point-to-point motion;
超精密点对点运动3阶轨迹规划算法与实现
2.
We study a third-order trajectory planning algorithm for ultra-precision point-to-point motion and its accuracy compensation method.
研究了一种优化的超精密点对点运动3阶轨迹规划算法及其精度补偿方法。
3.
A novel algorithm of four-order profile planning for point-to-point motion and error compensation method were investigated.
研究了一种优化超精密点对点运动的4阶轨迹规划算法及其精度补偿方法。
6)  starting point
起点起动点
补充资料:点阵动力学
点阵动力学
lattice dynamics 

   研究晶体中的原子在其平衡位置附近的振动及晶体性质与这些振动间的关系的学科。固体物理学的基本内容之一 。晶体中的原子(或离子、分子、原子集团)在空间作周期性排列,构成有序的点阵结构。在各个温度下,晶体中的原子都在其平衡位置附近作不断的热振动,晶体的比热容、热膨胀、热传导和相变等宏观热现象都与这种热振动有关,点阵动力学就是要研究晶体中这种热振动的特征,并与晶体的宏观性质联系起来,还要进一步研究外加电磁场与晶体内部热振动间的相互作用及由此而产生的各种效应。
    晶体中原子之间有相互作用力,故各原子的热振动是相互联系的,这些相互联系的振动构成了晶体中的波动,称为点阵波。由N个原子组成的晶体,共有3N个振动自由度,3N个振动模式。研究晶体内部运动的基本问题之一是求出所有可能存在的振动的本征频率 。 在点阵动力学的简谐近似中,假定原子作简谐振动,列出各原子遵守的动力方程,根据有解的条件可得晶体中存在两种频率,一种是低频振动(对应原子或分子的整体振动),是以普通声波形式出现的弹性波,故称为声频支;另一种是高频振动(对应分子内部的振动),其频率与红外线的频率相当,故称光频支。决定频率分布也是重要的,因这直接涉及晶体的内能和比热容,这通常由实验测定,或利用简单模型加以规定(例如德拜模型)。对谐振动或点阵波量子化后,就可求出晶体的内能和比热容(见固体比热容)。
   把原子看成是线性谐振子只是一种近似,实际上晶体的许多性质是由原子的非线性振动引起的。例如由于振动的非线性,温度的改变将使振动的平衡位置发生变化,从而出现热膨胀现象;又如点阵波间的相互作用也起因于非线性振动,点阵波的相互散射导致了热阻的产生,可解释晶体的热传导现象。
   在量子理论中,原子的振动能量和点阵波的能量是量子化的,仿照光子概念,点阵波的能量量子称为声子,其能量为hγ( h为普朗克常量,γ为点阵波频率 )。与光子一样,声子不仅具有能量,还具有质量和动量,是一种准粒子,它可与其他声子或光子相互作用。原子振动能量的改变导致相应声子的产生或消失。电磁波与点阵振动的相互作用可处理成光子-声子相互作用 , 例如光子与声子的非弹性碰撞产生拉曼散射或布里渊散射。晶体中的电子与点阵振动的相互作用可处理成电子-声子相互作用 ,在相互作用过程中电子的能量和动量可转移给声子,相应地点阵振动能量跃迁到较高能级;反之,声子的能量和动量也可转移给电子,对应点阵振动能量跃迁到较低能级 。 这种电子-声子相互作用是纯净的无缺陷金属产生电阻的原因,也是超导电性的起因。导致晶体产生热阻的点阵波间的相互散射可处理成声子 -声子的相互作用过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条