说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对偶方程
1)  dual equation
对偶方程
1.
The dual equations and analytical solutions of two-dimensional crack problems in piezoelectric ceramics;
压电陶瓷二维裂纹问题的对偶方程及其解析解
2.
New sufficient conditions for the non-existence of positive solution to a nonlinear difference equation with unbounded delay and to its dual equation are obtained, and some of the results in the literature are improved.
研究一类非线性无界时滞差分方程及其对偶方程,给出了方程不存在正解的充分条件,所得结论改进了有关的结果。
3.
By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses,the dual equation which is constructed from boundary conditions lastly was solved.
 引入势函数,形成运动微分方程,对运动微分方程和各种响应进行Laplace变换及Fourier正弦、余弦变换,最后求解由边界条件形成的对偶方程———这种研究动态裂纹的方法已经被广泛使用并成为比较系统的方法· 以一种模型为例,对其推演过程进行了研究,最后发现:此方法在数学推演时,存在着不严密的问题,推演结果带有偶然性,不具可信性·
2)  dual equations
对偶方程
1.
The correspondence principle and variational method were employed to introduce a Hamiltonian system method for dealing with the bending problem of viscoelastic cantilever-beams,so that fundamental eigenvectors of dual equations,i.
利用对应原理和变分法,提出一种求解粘弹性悬臂梁问题的哈密顿体系方法,得到对偶方程的基本解向量,即零本征向量和非零本征向量。
3)  equation of dual type
对偶型方程
4)  dual integral equations
对偶积分方程
1.
By using the Fourier transform,the problem can be solved with a pair of dual integral equations in which the unknown variable is the jump of displacements across the crack surfaces.
首先利用付里叶变换,使问题的求解转换成对一对变量为裂纹面上位移差的对偶积分方程的求解。
2.
With Fourier transform,the problem is evolved as dual integral equations where the unknown variable is taken as the jump of the displacements across the cract surface.
利用傅立叶变换,使问题的求解转换为对一对以裂纹表面上的位移差为未知变量的对偶积分方程的求解。
3.
By using the Fourier transform,theproblem can be solved with the help of a pair of dual integral equations in which the unknown variable is thejump of the displacements across the crack surfaces.
利用 Fourier 变换,问题可以转化为对未知数是裂纹表面张开位移的一对对偶积分方程的求解,此对偶积分方程采用 Schmidt 方法求解。
5)  dual integral equation
对偶积分方程
1.
By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable was the jump of the displacements across the crack surfaces.
 利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题· 经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程· 在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式· 数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响· 从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同·
2.
By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations,of which the unknown variables are the jumps of the displacements across the crack surfaces.
 利用Schmidt方法分析了位于正交各向异性材料中的张开型界面裂纹问题· 经富立叶变换使问题的求解转换为求解两对对偶积分方程,其中对偶积分方程的变量为裂纹面张开位移· 最终获得了应力强度因子的数值解· 与以前有关界面裂纹问题的解相比,没遇到数学上难以处理的应力振荡奇异性,裂纹尖端应力场的奇异性与均匀材料中裂纹尖端应力场的奇异性相同· 同时当上下半平面材料相同时,可以得到其精确解·
3.
The solution of this problem can be transformed into dual integral equation, then a set of dual integral equation is solved by using the Schmidt' s method instead of using the second Fredholm integral equation method.
用非局部线弹性理论研究了无限大功能梯度材料反平面的裂纹问题,通过Fourier积分变换使该问题的求解转化为对偶积分方程,然后利用Schmidt方法代替第二类Fredholm方法求解对偶积分方程,克服了Fredholm方法求解积分方程时积分核为奇异时遇到的困难。
6)  Hamiltonian dual equation
哈密顿对偶方程
1.
Control differential equations of the beams were transformed into Hamiltonian dual equations.
从能量变分原理出发,由勒让德变换引入对偶变量,导出了Timoshenko梁弯曲问题的哈密顿对偶求解体系,将梁的控制微分方程转化为哈密顿对偶方程,为借鉴现代控制理论的方法求解Timoshenko梁弯曲问题建立了理论基础。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条