说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> Lagrange插值多项式 1)  lagrange interpolation polynomial Lagrange插值多项式 1. On the convergence at the zero of Lagrange interpolation polynomials; 基于等距结点的Lagrange插值多项式在零点的收敛速度 2. Lagrange interpolation polynomial is revised and a new operator H n(f;x) is constructed. 对Lagrange插值多项式进行了修正 ,构造了一个新的算子Hn(f;x) ,Hn(f;x)对每个f(x) ∈Cj[- 1,1] ,0 ≤j≤ 3都一致收敛 ,并且收敛阶达到最 3. Bernstein about the sequence of Lagrange interpolation polynomials to ｜x｜ at equally spaced nodes divergences everywhere to Newman-type nodes. B rutm an和Passow把x在等距结点所构成Lagrange插值多项式序列几乎处处发散的结果推广到一类N ewm an型结点,文章考虑了更一般的函数,它的Lagrange插值多项式仍旧处处发散,进一步指出了x的发散性并不是孤立的现象。 2)  Lagrange interpolation polynomials Lagrange插值多项式 1. The weakly asymptotic order for the average error of the Lagrange interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained. 得到了以第二类Tchebycheff多项式的零点为插值结点组的Lagrange插值多项式在Wiener空间下的平均误差的弱渐近阶。 2. This paper argues that the sequence of Lagrange interpolation polynomials corresponding to the function \\$f(x)=|x|~α(0<α≤1)\\$ on modified equidistant nodes in \ divergens everywhere in the interval except at zero and the end-points. 讨论了函数f(x)=|x|α(0<α≤1)在修改了的等距结点上构成的Lagrange插值多项式序列的发散性。 3. This paper discusses the divergence of the sequence of Lagrange interpolation polynomials corresponding to the function f~α_λ(x)=x~α,0≤x≤1,λ|x|~α,-1≤x<0,(0<α≤1,λ being constant 在此讨论了函数fαλ(x)=xα,0≤x≤1,λ｜x｜α,-1≤x<0,(0<α≤1,λ是常数)在等距结点上构成的奇数次Lagrange插值多项式序列的发散性。 3)  Lagrange polynomial interpolation Lagrange多项式插值 1. As a first step, a unified framework based on the Lagrange polynomial interpolation for various known discrete fractional Fourier transforms (DFRTs) is developed, and under this framework, the precision of the DFRT which approximates to the continuous fractional Fourier transform (CFRT) can then be theoretically evaluated using simple numerical mathematics. 首先将所有已知的分数维Fourier变换 (DFRT)统一定义在Lagrange多项式插值的框架下 ,从而使人们能够利用简单的计算方法理论分析出各类DFRT逼近到连续分数维Fourier变换 (FRT)的精度 ,同时 ,证明了最近由S 。 2. We also analysis the precision and feasibility of interpolating the IGS 5 min precise clock offset into 30 s with both the Lagrange polynomial interpolation and linear interpolation. 对比了IGS官方提供的5 min和30 s间隔的精密钟差变化规律,分析了利用8阶滑动式Lagrange多项式插值和线性插值将精密钟差内插至30 s间隔的精度及可行性,得出了一些国内文献未论及的结论。 4)  lagrange interpolation basic polynomial Lagrange插值基本多项式 5)  Lagrange piecewise interpolating polynomial 分段Lagrange插值多项式 1. The Lagrange piecewise interpolating polynomial is adopted to approximate arbitrary dynamic loading in the Duhamel integration for the solution of dynamic response of a grid systems. 在求解格栅结构动力反应的Duham el积分中利用分段Lagrange插值多项式逼近任意动力荷载,推导了相关公式。 6)  Binary Lagrange Polynomial Interpolation 二元Lagrange插值多项式 补充资料：Lagrange插值公式 Lagrange插值公式 Lagrange interpolation formula 　　h郎叨罗插值公式[u罗明罗谕娜咖“佣丘团m“.;瓜-甲明Ka抓砚Pno朋”.OHHaa中oPM抑a』 给出函数f(x)在结点x。，…，x，上的摊次插值多项式(肠脚卿插值多项式(加脚n郎角把耳旧h由n poly-朋m训))的公式: 乙(x卜丫r(x、日三二三‘.(1、 ’z尹飞xi一xz当诸x‘为等距时，即x，一x0=一x。一xn_1二h，利用记号(x一x0)/五=:就可将(1)化成形式 L。(x)=L。(x。+th)=一(一‘)·业皿矛上业息(一‘)‘(:)架升·(2)表达式(2)称为助gmn罗等距结点(叫山曲恤nt nodes)插值公式，其中f(x，)的系数 ，、。_‘，n、t(t一l卜二(t一n) 气i一‘)n!称为肠即叨邵系数(U即阳罗cocffic祀nts). 如果f在区间〔a，b1上具有n+1阶导数，又如果所有的插值结点都在此区间上且对任一点x盯a，b]记 “:“nUn{x。，’“，x。，x}，刀:二~{x。，…，x。，x}，那么必存在一点尝‘「“二，刀二』使 r，__、一了(·‘’)(古)。·(x) f(x)一L。(x)二二二艺共淤“达， (n+l飞!其中 。。(x)=fl(x一x，)· j一0如果导数f(·十’)的绝对值在【a，b]上不超过常数M，又如果诸插值结点取成”+1次qe6从uI曲多项式的诸根在从[一l，l]到【a，bJ的线性映射下的映象，那么对于任何x〔【口，b]都有 !f(x)一L一(、、.‘M，‘牡军其尸. 一”‘””‘’一(n+一)!2，”+’如果诸插值结点是复数z0，…，z。且位于某个以逐段光滑围道7为边界的区域G内，又如果f是G的闭包上的单值解析函数，那么其助g加罗插值公式具有形式 ，，，、=卫一f竺立劝卫丝立了，尸、，尸 儿。(z)=声能丁l书节冷厅件毕f(C)d乙， 2“‘少田(‘)(‘一z)“”一”其中 了‘，、_;‘，、=里业土f-一工丝上‘刁: 了、一z一。、一2兀iJ。(C)(z一乙)一” 了 三角多项式插值的肠gn坦罗插值公式为: T‘、卜女，月一圣鱼工二卫鱼， k一。一z笋飞sin又x*一xz)/‘它是在给定结点x。，…，x。上取指定值y0，…，y。的”阶三角多项式. 公式是由J.L.U脚n乡于1795年提出的.　　 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com