1)  interface adhesion
界面黏结性
2)  interface stick performance
界面黏结性能
3)  interface
界面
1.
Effect of an electromagnetic field on precipitates in the composite interface of Al-Mg/Al-Si;
电磁场对Al-Mg/Al-Si复合界面析出相的影响
2.
Investigation on microstructure at the bonding interface of TiC cermet/steel composite plate prepared by explosive welding;
TiC硬质合金/碳钢爆炸焊接复合板界面微观组织
3.
Effect of nano ZrO_2 crystal structure on copper matrix composite interface;
纳米ZrO_2晶型对铜基复合材料界面的影响
4)  interphase
界面
1.
Advances in Research of the Interphase in Multi-Phase Polymers;
多相聚合物体系相界面研究进展
2.
Densities of the composites with or without C/SiC interphase are about 1.
当C/SiC界面涂层存在时,气相渗硅C_f/SiC强度为239。
3.
The interphase of glass state carbon appeared between the matrix and reinforced phase, which resulted in weak joint.
研究表明:材料表现出脆性断裂的破坏失效特征;SiCp/SiC复合材料内部颗粒间、团聚体之间残留的微孔和孔隙等薄弱环节使材料的强度降低;复合材料基体和增强相之间有一层由树脂热解而产生的玻璃碳,造成界面的弱结合,使材料强度不高。
5)  ⅠandⅡinterfaces
Ⅰ,Ⅱ界面
6)  boundary
界面
1.
Moving Chemical Reaction Boundary Formed by Strong Reaction Electrolytes: Theory;
由强反应电解质形成的移动化学反应界面:理论(英文)
2.
Stationary Chemical Reaction Boundary: Theory and Test;
静止化学反应界面:理论和验证(英文)
参考词条
补充资料:复合材料界面相容性


复合材料界面相容性
interfacial compatibility of composite materials

  复合材料界面相容性interfaeial eompatibilityof composite materials增强体和基体构成复合材料界面时,两者之间产生的物理和化学的相容性。包括浸润性、反应性和相互溶解性等。 浸润性对复合材料浸润性的认识可以借鉴比较完善的润湿理论。把不同的液滴与不同的固体表面相接触,液滴将会出现平展地接触固体(良好润湿)或者仍然保持球珠状与半球珠状(不良润湿)(见图)。出现润湿或液体固体良好润湿液体固体液体与固体的 润湿现象 不良润湿不润湿情况取决J固体与液体表面张力(冷v,儿v)的大小和这两个力形成合力的夹角口(润湿角)。一般以夕<90。为润湿,e>90。为不润湿,夕=了为完全润湿,夕=1800为完全不润湿。角度的大小按下式决定,即 cos夕=五迎二二性! 竹v式中他L为固一液界面张力。因此,当人、>他v一凡L时,l>eos夕>0,夕<90。为润湿条件;反之下Lv<帐v一他L时,cos夕<0,夕>900为不润湿。在特殊条件下,帐V=几v,即帐L=0的情况,eos夕=1,口=0。表示液体完全润湿固体。因此,改变复合材料增强体或液态下基体的表面张力,可以改变体系的润湿情况。由于不润湿的体系是不能构成复合材料的,所以有时要通过对增强体进行表面处理的方法来改豹祠湿条件,有时也可以通过改变基体成分来实现(如金属基复合材料中改变基体合金成分)。增强体与基体材料润湿与否可以通过测定润湿角来判断。 此外,液体对固体吸引力的大小,也可以用液体对固体的粘结力Wa来描述。讯为将单位面积的固一液面拉开所需的功。Wa与固体、液体的表面张力和固一液界面张力的关系为 Wa一九A+冷A一九s另外,液体自身也有个结合功Wc反映液体自身的吸引力,即 Wc~2入v只有讯)哄时,才产生润湿行为。 反应性界面反应性取决于增强体与基体构成反应产物的生成自由能△G的大小与符号。如果△G为负值而且较大,则容易发生反应,这是从热力学出发的观点。同时还应该考虑反应动力学的问题,即表面反应活化能要低一些才有利于反应的进行。因此,如果想要使界面发生反应以改善界面粘结状态,则要在增强体化学惰性的表面上引入活性基团(如在碳纤维表面用氧化法形成各种碳一氧基因);反之,如果想避免发生界面化学反应,则要在增强体表面涂以防止反应的惰性隔离层(如对于某些金属基复合材料体系)。 相互溶解性界面上两相的相互溶解在理论上也是取决于某特定条件下两相的混合自由能△Gm的大小与符号。如果△Gm是较大的负值,则两相形成混合后自由能降低了,趋于稳定状态,当然意味着溶解容易进行。某些金属基复合材料体系在一定条件下,界面确实会发生某些溶解行为。复合材料体系的界面相互溶解会增加粘结性,但也会严重损伤增强体,所以原则上应设法避免。 r皂丈、法、
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。