说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 逻辑位置
1)  logical location
逻辑位置
1.
On the contents and logical location of excluded circumstances of death penalty;
论死刑除刑情节的内容及其逻辑位置
2.
Conventional location of“not” is often inconsistent with its logical location.
:not的习惯位置常有与逻辑位置不一致的情况 ,本文分析归纳了这些情况 ,有助于化解阅读时理解上的困惑。
2)  logical arms position
逻辑存取臂位置
3)  logical fault vector location
逻辑故障向量位置
4)  configuration logic
配置逻辑
5)  lu
逻辑装置
6)  biasing logic
偏置逻辑
补充资料:多值逻辑与连续逻辑
      当命题的真值数目为两个以上时,研究这类命题的逻辑运算及其电网络的实现称为多值逻辑;如果真值数目趋于无穷多个值时,就是连续逻辑,因而连续逻辑也可认为是多值逻辑的一种特殊情况。
  
  多值逻辑是正在发展中的现代科学领域之一。多值逻辑与古典逻辑中真值只能取"真"、"假"两值不同,它可以取三个,四个,......,直至无限个。因而从哲学、逻辑学的角度,存在如何解释各个真值的意义,以及多值逻辑和古典的二值逻辑的关系等问题。对于逻辑网络,显然需要发展相当于布尔代数和开关理论的多值逻辑代数和多值逻辑网络的综合、分析方法。发展多值硬件也是多值逻辑的主要课题之一。因而,所谓多值逻辑除了逻辑学的内容以外,还常指多值逻辑运算、多值电路及其应用等内容。
  
  1920年,波兰学者J.卢卡西维奇在研究亚里士多德的未来偶然性问题时,首先提出了三值逻辑。1921年,美国学者E.L.波斯特假定命题的真值数目大于2,建立起任意有限多个值的逻辑系统。后来,人们在建立完备的多值逻辑演算系统、研究演算的性质和探索多稳态电路元件、多值电路方面进行了许多工作。
  
  多值逻辑的运算手段称多值代数。1921年,波斯特首先提出的多值代数完备集包括两种运算
  
  式中xi为逻辑变量,取值0,1,2,...,R-1;modR为模R的代数运算。在二值情况下R=2,第一种运算即二值的"或"运算,第二种运算则为二值的"非"运算。这两种运算虽然完备,但不易形成运算方便的范式。1927年,B.A.伯恩斯坦提出用 modR的算术加和算术乘两种运算构成R值的运算集。对应R=2,mod2的加法运算即为二值的"异或",mod2的乘法运算即二值的"与"运算。用这种代数在展开多值函数成范式时比波斯特方法直接和方便。1935年,D.L.韦伯指出,只要一种运算即可构成R值多值运算的完备集
  
  R=2时,这一运算即为二值的"或非"。此外,还不断有人致力于把二值逻辑的"与"、"或"、"非"三种基本运算直接推广成多值形式。相应二值情形的"与"、"或",当变量为多值时可推广为"最小"(min)和"最大"(max)运算:
  
  二值的"非"运算较难直接推广成多值的,对多值单变量运算提出过各种方案,但较常见的单变量运算有
  
  =0
   其他情况
  现代人们比较集中于低 R值特别是三值、四值逻辑的研究。对三值逻辑提出的J运算和T运算,受到广泛的注意。J运算的定义为
  Jκ(x)=R-1  κ=x
    κ=0,1,2
  =0
   
  J运算配合"最大"、"最小"运算,形式上很容易把逻辑函数写成"积之和"或"和之积"范式。T 运算的定义为
  T(x1,x2,x3,κ)=x1 κ=0
  =x2 κ=1
  =x3 κ=2
  同时,也有提出把三值逻辑的真值取为(-1,0,1)的,称为