说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 晶体键结构
1)  crystal bond structure
晶体键结构
2)  Crystal structure
晶体结构
1.
Synthesis and crystal structure [Cd(phen)_3]_2[PMo~ⅤMo_(11)~ⅥO_(40)] and H_3O[Co(phen)_3]_2[PMo_2~ⅤMo_(10)~ⅥO_(40)];
[Cd(phen)_3]_2[PMo~ⅤMo_(11)~ⅥO_(40)]和H_3O[Co(phen)_3]_2[PMo_2~ⅤMo_(10)~ⅥO_(40)]的合成与晶体结构
2.
Synthesis and Crystal Structure of Zn(Ⅱ) Complex between Bis(3,5-Dinitrobenzoic Acid) and Bis(1,10-phenanthroline);
二(3,5-二硝基苯甲酸)双(1,10-二氮杂菲)锌(Ⅱ)配合物的合成及晶体结构
3.
Synthesis and crystal structure of 2,5-bis(2,4-die thylbenzoyl) terephthalic acid;
2,5-二(2,4-二乙基苯甲酰基)对苯二甲酸的合成及晶体结构
3)  crystalline structure
晶体结构
1.
Effect of different synthesizing methods on LiMn_2O_4 and its derivatives’ crystalline structure and electro-chemical properties;
合成方法对LiMn_2O_4及其衍生物的晶体结构及电化学性能的影响
2.
Effect of different raws on LiCo_(0.05)Mn_(1.95)O_4 s crystalline structure and electro-chemical properties;
不同原料对锂离子电池正极材料LiCo_(0.05)Mn_(1.95)O_4的晶体结构及电化学性能的影响
4)  crystal structures
晶体结构
1.
The development of CAI software of crystal structures;
晶体结构CAI软件的研制
2.
Two new dinuclear ternary complexes, [Cu_2(L~1)(Phen)_4](ClO_4)_4 (1) and [Mn_2(L~2)_2(Phen)_4]-(ClO_4)_2(2) (Phen=1,10-Phenanthroline, L~1=benzotriazole, L~2=4-quinolinecarboxylic acid) have been synthesized and characterized, and their crystal structures have been determined.
合成了含邻菲咯啉的三元混配的双核酮、锰配合物:[Cu2(L1)(Phen)4](C lO4)4(1)和[M n2(L2)2(Phen)4](C lO4)2(2)(Phen=邻菲咯啉,L1=苯并三氮唑,L2=4-喹啉羧酸),并用X-射线单晶衍射法测定了它们的晶体结构。
3.
The crystal structures of two isomers (m2[ZnCl4] and m4 [ZnCl4]) have been determined by single-crystal X-ray diffraction method.
88)体系中的 2个异构体的晶体结构。
5)  structure [英]['strʌktʃə(r)]  [美]['strʌktʃɚ]
晶体结构
1.
Synthesis,characterization and crystal structure of 1,2-bis[3-(6,8-di-tert-butyl-3,4-dihydro-2[H]-1,3-benzoxazine)-yl]ethane;
1,2-二[3-(6,8-二叔丁基-3,4-二氢-1,3-苯并噁嗪)基]乙烷的合成及晶体结构
2.
Influence of Substrate Temperature on the Structure and Electric Properties of ZnO Films;
衬底温度对ZnO薄膜晶体结构和电学性质的影响研究
3.
Synthesis and Crystal Structure of Aluminium Complex with 3 Hydroxyflavone;
三(3-羟基黄酮)合铝(Ⅲ)的合成及晶体结构
6)  crystallographic structure
晶体结构
1.
Microstructure and crystallographic structure were studied by means of SEM and XRD analysis as well as the shape memory effect measurement.
利用扫描电镜、X射线衍射研究了CuAlMnZnZr形状记忆合金的显微组织及其晶体结构并利用弯曲变形法测定了该合金的形状记忆效应。
2.
The crystallographic structure of the δ phase of antioxidant 1010 has been determined.
利用示差扫描量热分析 (DSC)、红外光谱 (IR)、粉末X射线衍射 (XRD)对 3种晶型抗氧剂 10 10进行了表征 ,对δ -晶型的晶体结构进行了进一步研究 ,指标化了该晶体的粉末X射线衍射峰 ,其晶体结构为四方晶系 ,体心点阵结构 ,晶胞参数为a =1。
3.
A illustration of crystallographic structure and the nearest neighour configuration of Fe sites for Tb-3Fe 26.
我们的研究方法是先用ATOM程序绘制了Tb3 Fe2 6 0 Cr3 0 的晶位结构图和各晶位近邻配置图 ,计算出近邻原子间的键长 ,在仔细研究了Tb3 Fe2 6 0 Cr3 0 晶体结构的基础上 ,制定了穆斯堡尔谱拟谱方案研究结果表明Tb3 Fe2 9 xCrx 中Cr原子的含量x =1 0 ,1 5时Cr优先替代 4i晶位的铁 ,当Cr的含量x =2 0 ,3 0时Cr优先替代 8j晶位的铁 。
补充资料:晶体的键合
      组成晶体的原子(分子)是靠什么样的相互作用维系在一起的?虽然从本质上说,这些相互作用都可归结为电子和原子核间的库仑相互作用,但从其表现形式看,可概括为下面几类:
  
  范德瓦耳斯键合  惰性气体低温下形成的晶体是这类结合的典型例子。惰性气体原子是电中性的,它的电子云空间分布是球对称的,没有固有的电偶极矩。但一个原子的电子运动产生的瞬时电偶极矩会在近旁的原子上感生出电偶极矩。感生的电偶极矩和它的相互作用表现为原子间的相互吸引。但满壳层的惰性气体原子相互靠近,电子云发生交叠时,泡利不相容原理又使它们强烈排斥。上述吸引作用与排斥作用的综合效果使惰性气体在低温下结合成晶体。通常把这类作用称为范德瓦耳斯键合。
  
  中性分子结合成的晶体(分子晶体)也是这类键合的例子。非极性的分子构成晶体的键合作用和惰性气体原子相类似。极性分子有固有的电偶极矩(极性分子),固有电偶极矩间的静电作用,以及固有电偶极矩在近旁分子上感生的电偶极矩与它的静电作用,都对分子晶体的键合有贡献。
  
  范德瓦耳斯键合的晶体都是绝缘体,内聚能很小,熔点很低。晶体结构常常是按其组成的原子(分子)的几何形状取的密堆积结构。
  
  离子键合  典型的例子是氯化钠晶体。钠原子失去一个价电子变成Na+离子,它具有与惰性气体原子氖相似的满壳层结构;氯原子得到一个电子变成Cl-离子,它与惰性气体原子氩有相似的满壳层结构;形成晶体时,每个Na+(Cl-)处在由六个Cl-(Na+)组成的正八面体的中央。离子晶体是正负离子间的库仑吸引作用,和满壳层的离子间的范德瓦耳斯排斥和吸引作用的综合效果,结合在一起的。典型的离子晶体可以简单看作是一些带正电荷的硬球(正离子)和一些带负电荷的硬球(负离子)排列成的结构。每个离子的最近邻应该是异号离子组成的多面体,总的效果是正负电荷相互完全屏蔽。因此,离子键合的晶体的结构一般不能由离子的几何形状的密堆积来考虑。
  
  离子晶体的内聚能主要来自较强的库仑吸引作用,其数量级一般是每个离子几个电子伏,比范德瓦耳斯键合的内聚能大两个数量级,它们一般是好的绝缘体。熔点较高。硬度也较高。
  
  有些离子性晶体中,除了离子外,还有分子或原子团;这时除去离子间库仑作用外,还有离子与分子或原子团的电偶极矩(固有的或感生的)间的静电作用。
  
  共价键合  共价键是化学中关于分子结构的一个基本概念。分子氢是最熟知的共价键的典型。典型的共价键是作用在两个中性原子之间的。通常每个键由一对自旋相反的电子组成,每个原子贡献一个价电子参加成键;成键的电子倾向于局域在这两个原子之间,为这两个原子所公有,结果使每个原子形成满壳层结构。分子氢的成键电子是1s电子,公有化后使每个氢原子的1s轨道都填满。共价键也是晶体键合的一种基本类型。金刚石是典型例子。自由碳原子的外层电子状态是2s22p2,形成金刚石的过程可看作是先把碳原子由基态激发到 2s2p3的状态,三个p轨道和一个s轨道重新组合成四面体构型的"杂化"轨道,每个碳原子处在四个最近邻的碳原子组成的正四面体的中央,它和这四个最近邻原子构成四个共价键。虽然从基态2s22p2变成杂化轨道2s2p3需要能量,但形成共价键能量的降低使总的效果是能量下降。这便形成金刚石的点阵,每个碳-碳共价键的键能约为3.6电子伏。杂化轨道成键的特点是键有很强的方向性,因此,共价键合形成的晶体的结构,往往与密堆积结构相差甚远,是比较稀松的结构。各种电子组态可以给出各种构型的杂化轨道,例如,d2sp3的组态给出正八面体的构型的杂化轨道。
  
  共价键合的晶体一般是绝缘体或半导体。最著名的半导体材料硅和锗便是和金刚石类似的共价键合的晶体。共价键合也有较高的内聚能,并且晶体的强度也比较高。
  
  金属键合  金属键合是固体中特有的一种键合方式。原子贡献出它的全部或一部分外层电子,这些电子成为可在整个晶体中"自由"运动的传导电子,晶体可想象为浸没在传导电子形成的负电荷背景上的一些带正电荷的离子实的周期排列。典型的例子是碱金属,每个原子贡献一个外层电子,正离子实是类似于惰性气体原子的满壳层结构。正离子实与负电荷背景的库仑作用以及离子实之间的范德瓦耳斯排斥和吸引作用,公有化电子的动能较束缚在原子上时低,这些因素是构成金属键合的物理原因。通常,金属键合的内聚能略低于离子键合与共价键合,它的晶体结构倾向于比较密堆积的结构,通常强度也比共价晶体低。它们由于有传导电子而成为导体。
  
  对于有未满的d轨道或f轨道的金属来说,键合的物理图像与上述简单金属的图像颇不相同。d电子和f电子间的键合相对更局域化,负电荷空间分布很不均匀,因此结构和性质上也有相当的差异。
  
  氢键  一定条件下,氢可以受到两个原子的较强的吸引,使它失去自己的电子,变成一个裸露的质子,它在这两个原子间构成氢键。氢键的结合能较小,一般是0.1电子伏的量级。它是水分子间相互作用的重要部分,冰的晶体键合是氢键起作用的典型例子。在某些铁电晶体中,氢键对其物理性质起重要作用。
  
  实际的键合  应当强调,上面对晶体键合的分类是相对的。例如,在大多数情况下,离子键合和共价键合并无明确的界限,可以说它是部分离子性部分共价性的。已经发展了一些关于部分离子性的共价键(或部分共价性的离子键)的半经验理论,并从这个观点说明了一系列物理现象。金属键合与共价键合之间的分界线也不是那样明确的,也可以说有些金属的键合中有共价的成分。同样的一种材料,在不同条件下键合的性质也是不同的。例如碳在形成金刚石时是典型的共价键合;形成石墨时却只在层内是共价键合。而锡在常温下是金属键合,低温下却可形成一种共价键合的半导体晶体。现代关于固体电子结构的理论已经可能给出固体键合的更精确的描述,但这丝毫也不降低前面介绍的关于晶体键合的分类的概念的意义。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条