说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 最长公共子序列算法
1)  longest common subsequence algorithm
最长公共子序列算法
2)  longest common subsequence
最长公共子序列
1.
A new algorithm for finding length of the longest common subsequence;
求最长公共子序列长度的一个新方法
2.
Solving the longest common subsequence (LCS) of any given strings is one of the basic and important research problems in computer science.
求解任意给定的两个字符串的最长公共子序列(LCS)的问题是计算机科学中一个基本和重要的问题,它是一种仅仅允许对模式和正文进行插入和删除编辑操作的近似串匹配问题。
3)  longest common token subsequence
最长公共标识符子序列
1.
Two LCS length algorithm and a longest common token subsequence algorithm are listed.
阐述了最长公共子序列算法在程序代码结构相似度度量中的应用,列举了两种计算最优值和一种获取最长公共标识符子序列的算法。
4)  constrained longest common subsequence
带约束最长公共子序列
1.
A fast algorithm of constrained longest common subsequence
带约束最长公共子序列快速算法
5)  longest common sub-sequence
最长公共序列
6)  common sub-sequence
公共子序列
1.
It first selects certain modules which have a total width little less than or equal to the width of the given outline, and then transforms these modules into common sub-sequences of sequence pairs.
该算法采用SP表示方法,以公共子序列为基础,在随机搜索过程中限定布图宽度的变化,从而使减小芯片面积的目标与固定边框的目标在一定程度上取得一致。
补充资料:N点有限长序列的离散傅里叶变换
      时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
  
  (1)
  式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
  
   (2)
  式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
  
  由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
  
  DFT的原理  是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N
  
  DFT的主要性质  共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
  
  
  DFT的快速算法  又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条