说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性啁啾
1)  nonlinear chirp
非线性啁啾
1.
The limit region of the nonlinearly chirped FBG(NLCFBG) for the linear chirp c_(1) and nonlinear chirp c_(2) has been analyzed.
分析了不同长度情况下非线性啁啾光纤光栅(NLCFBG)的一阶啁啾系数c1、二阶啁啾系数c2的取值范围,并对其光谱及时延特性进行了数值仿真。
2)  nonlinear chirp signal
非线性啁啾信号
3)  linear chirp
线性啁啾
1.
A realization method of a multi-channel filter based on large channel spacing linear chirped fiber grating has been presented,which applies amplitude and phase samplings and is based on rectangle function sampling form without apodization.
提出了一种基于光纤光栅大信道间隔的多信道滤波器实现方法,采用了振幅采样结合相位采样的线性啁啾光纤光栅,基于矩形函数的采样形式,不需要作单个采样的切趾。
2.
The phase characteristics of the linear chirped laser pulse with Gaussian temporal and Gaussian spatial structure is studied by using the stable phase point method while propagating in vacuum.
利用稳态相位点的方法研究了线性啁啾时空高斯脉冲传输过程中的相位特性,并在二阶近似的情况下讨论了其传输过程中的时空特性,两种方法从不同的侧面得出了相同的结论,即:时空高斯脉冲在传输的过程中,在无穷远处将退化为球面波,或者在旁轴近似的情况下退化为平面波。
3.
Extracting spectral phase differences between two linear chirped pulse from the spectral interferogram is simulated based on Fourier Transform Spectral Interferometry.
在超快光学瞬态相移的测量中,结合线性啁啾脉冲与频谱干涉技术,可以获得啁啾脉冲相移随频谱的变化规律。
4)  nonlinearly chirped FBG
非线性啁啾光纤光栅
1.
The limit region of the nonlinearly chirped FBG(NLCFBG) for the linear chirp c_(1) and nonlinear chirp c_(2) has been analyzed.
分析了不同长度情况下非线性啁啾光纤光栅(NLCFBG)的一阶啁啾系数c1、二阶啁啾系数c2的取值范围,并对其光谱及时延特性进行了数值仿真。
5)  line chirped fiber grating
线性啁啾光栅
6)  linear-chirped-pulse
线性啁啾脉冲
1.
Making use of properties of laser amplifier s spectral and gain saturation, a method to obtain symmetric amplifier chirped-pulses is proposed for linear-chirped-pulse amplification.
根据线性啁啾脉冲的特点,利用增益介质的受激发射谱特性,及脉冲在饱和放大时的放大特点,从理论上提出一种获得强度分布前后沿对称放大啁啾脉冲输出的方法,并利用数值模拟对该方法的可行性进行了研究,具体给出了在利用该种方法产生强度前后沿对称的放大啁啾脉冲输出时,应该遵循的部分规律。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条