说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 速度失配
1)  velocity mismatch
速度失配
1.
The reasons of the paired false target echoes are analyzed and the paired echoes are divided into two types,one is called "undersampled type" and anather,"velocity mismatched type".
分析了“欠采样”成对回波和“速度失配”成对回波的形成机理,给出了成对回波定位和强度的通用计算公式。
2)  group velocity mismatching
群速度失配
1.
In order to meet the demand of the developing femtosecond laser techniques and integrated optics, to resolve the problems of group velocity mismatching, pulse spreading etc in the β-BaB2O4 (β-BBO) single crystals which caused by the thickness, the preparation techniques of β-BBO films have been studied.
为了满足飞秒超快激光技术和集成光学发展的需要、解决βBaB2O4(βBBO)体单晶中因厚度带来的群速度失配问题以及脉宽展宽等问题,人们开始了βBBO薄膜的制备技术研究。
2.
The influence of group velocity mismatching on the THz radiation field and fs optical probe pulses and the effects of self dispersive propagation in radiation field are also analysed.
并对THz辐射场与飞秒 (fs)探测光束在同一介质内传播时的群速度失配以及辐射场自身色散效应的影响作了分
3)  Group-velocity mismatch
群速度失配
1.
The effects of group-velocity mismatch and dispersion,third-order nonlinear phase modulation on pulse shape,spectrum distribution and conversion efficiency of second-harmonic pulse were discussed.
详细讨论了群速度失配、群速度色散和三阶非线性相位调制效应对倍频光脉冲波形、光谱及转换效率的影响。
2.
The relation between the noncollinear angle and phase-matching angle,the parametric bandwidth as a function of the noncollinear angle,and the group-velocity mismatch of noncollinear phase-matching optical parametric generation are calculated.
对非共线相位匹配飞秒脉冲光参量产生过程作了理论研究,计算了非共线相位匹配结构的光参量产生过程中非共线角与相位匹配角的关系,参量带宽和群速度失配参数随非共线角变化的情况。
3.
A general theory of ultrashort-pulse (USP) optical parametric generation (OPG) that accounts for pump depletion, loss, phase mismatch, group-velocity mismatch (GVM) among the pump, signal and idler pulses, and intrapulse group-velocity dispersion (IGVD) is presented.
建立了一个超短脉冲(USP)光参量产生(OPG)过程的理论模型,综合考虑了泵浦光的消耗、介质损耗、相位失配、泵浦光、信号光和闲频光之间的群速度失配(GVM)和脉冲内的群速度色散(IGVD)等因素,导出耦合波方程组,对耦合波方程组进行数值求解并对USPOPG过程作数值计算,详细研究了GVM参数、IGVD参数、泵浦光的强度和脉宽以及信号光波长的调谐对USPOPG的转换效率、输出脉冲的脉宽和对称性等特性的影响。
4)  group velocity mismatch
群速度失配
1.
Influence of group velocity mismatch on pulse trapping in photonic crystal fiber;
光子晶体光纤中群速度失配对脉冲俘获的影响
2.
Based on fiber Bragg gratings as encoder/decoder,the effect of group velocity mismatch of the optical fiber is analyzed in FH OCDMA system.
分析了采用布喇格光纤光栅的 FH- OCDMA系统中不同群速度失配的光纤信道对系统性能的影响 。
5)  group-velocity mismatching
群速度失配
1.
Influences of the factors,such as input fundamental intensity,length of the crystal,self-phase-modulation (SPM) and cross-phase-modulation(XPM),group-velocity mismatching,detuned angle,azimuth angle,etc,on the conversion efficiency,pulse shape and spectra of the t.
针对超高强度飞秒激光,对利用单块BBO晶体产生三倍频(THG)的过程进行了分析,比较了单块晶体中三阶非线性效应以及级联二阶非线性效应对三倍频转换效率的作用,讨论了入射基频光光强、晶体厚度、自相位调制(SPM)、交叉相位调制(XPM)、群速度失配、失谐角、方位角等因素对三倍频光转换效率、时间波形及光谱分布的影响,在此基础上,提出了提高三倍频转换效率的方法。
2.
The results show that group-velocity mismatching is the main reason of the broadening of the second harmonic pulse and could lead to the decrement of conversion efficiency.
研究结果表明,群速度失配会导致二倍频光脉冲宽度的增大和转换效率的降低,非线性相位调制使二倍频光脉冲形状发生畸变,降低转换效率。
6)  group velocity mismatch
群速失配
1.
For studying the influence of group velocity mismatch on frequency conversion of AgGa1-xInxSe2,by means of theoretical analysis of group velocity match of ultra-short pulses and crystal Sellmeier equations,the phase-matching diagrams and group velocity mismatch for the second harmonic generation(SHG) and the optical parametric oscillation(OPO) pumped by Nd3+∶YAG(1.
为了研究群速失配对掺杂晶体AgGa1-xInxSe2频率转换的影响,依据超短脉冲的群速匹配理论和晶体的Sellmeier方程,计算了二次谐波产生(SHG)和Nd3+:YAG(1。
2.
The use of second harmonic generation as a technique for ultrashort optic pulse width measurement is analyzed to determine in detail the effect of group velocity mismatch (GVM) between fundamental and second harmonic fields considering different pulse shapes.
讨论了脉冲形状不同时 ,群速失配效应对二次谐波自相关法测量超短光脉冲宽度时的影响 。
补充资料:失配位错


失配位错
misfit disloc,士;八。。

失配位错misfit disloeations若一对晶体其取向相同,但晶格常数稍有不同,被置于完全的接触时,则在接近于界面处的原子会略微调整它们的位置,这样就会使得界面区域中的原子或处于“好”的形位,或处于“坏”的形位。这些“坏”区域与晶体位错相类似,故名失配位错。F.C.弗兰克(F rank)和范德米尔(Vande Merwe)于1949年首次预言失配位错的存在,并描述了它们若干重要性质。首次实验演示则于1956年实现:锗中杂质硼、硅或锡引起区域性成分变化,导致晶格常数的微小变化,可以观测到这些区域边界处失配位错的存在。 失配位错最常出现在晶体薄膜与衬底的界面上、合金中的脱溶粒子周围、三维“岛”与其基体之间等。主要的实验观察方法是电子显微术。近年来得知在半导体“超晶格”结构中的内界面上产生的失配位错对于器件性能有重要影响,因为它们是杂质原子的从尤坐位,是掺杂物质的高扩散通道,并且是有效的复合中心。关于失配位错的扩散运动行为也有相当的研究,即材料温度升高时,界面上的失配位错有一些会以某种方式迁移到晶体内部去。若设扩散以空位机制进行,则失配位错扩散运动的策动力大致可分为3个部分:由扩散导致应力场所施之力;由于空位不平衡浓度产生之力(与克肯代尔效应联系);失配位错彼此间所施之力。对此种运动实验和理论都进行了不少工作。 失配位错对晶间互扩散起一定作用。失配应变可用来提高晶体完整性。 失配位错的模型构想及理论处理与晶界位错有一定联系,但不应忽视二者间的区别(见小角晶界)o (杨顺华)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条