说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Rijndael密码算法
1)  Rijndael cryptographic algorithm
Rijndael密码算法
2)  Rijndael encryption algorithm
Rijndael加密算法
3)  Rijndael key generation algorithm
Rijndael密钥生成算法
4)  Rijndael Code
Rijndael密码
1.
To design a securer and easier constructed watermark, the biorthogonal integer wavelets with parameter based on lifting scheme is constructed, and a Hash function is built by transmutative Rijndael code.
为了得到一种安全性更高 ,构造更简单的水印 ,提出了一种基于提升格式的带参数双正交整数小波的构造方法 ,并通过引入变型 Rijndael密码构造出了一种 Hash函数 (记为 RH算子 ) ,设计了带参数整数小波变换和RH算子相结合的脆弱数字水印。
2.
An Integer Wavelet Transform with parameters is firstly constructed and the transmutative Rijndael code is used to construct a Hash function, and then a visible digital watermark algorithm based on the Integer Wavelet Translation with parameters, Discrete Cosine Transform (DCT) and the Transmutative Rijndael encryption algorithm are presented.
构造出了带参数的整数小波,应用变型的Rijndael密码构造出了Hash函数。
5)  Rijndael cipher
Rijndael密码
1.
After simplification on the basis of mergence, it results that Rijndael cipher is substantially a nonlinear recurrence algorithm of affine permutation like Y=A(?)S(X)(?)K, which is illustrated with 128 bit block and .
基于归并将Rijndael密码算法了进行简化,结果表明Rijndael密码实质上是一个形如仿射变换Y=A(?)S(X)(?)K的非线性迭代算法,并以分组长度128比特、密钥长度128比特作为特例,给出了二轮Rijndael密码的差分攻击。
6)  Rijndael algorithm
Rijndael算法
1.
Key-controlled Rijndael algorithm with multiple S-boxes;
密钥控制的多S盒Rijndael算法
2.
Safety design of IC card medicare system based on Rijndael algorithm;
基于Rijndael算法的IC卡医保系统设计
3.
This paper introduces the concept of finite-field as well as Rijndael Algorithm structure,and also describes the design thinking of the key part in applying FPGA high speed operation in details based on the detailed analysis of the operation process of addition and multiplication on the GF(2~8) grounds in algorithm.
在介绍有限域的概念及Rijndael算法结构,详细分析算法中基于GF(28)加法、乘法运算过程的基础上,详细阐述了使用FPGA高速实现运算关键部分的设计思路。
补充资料:保密码
保密码
secure code

   由密钥控制的消息或信号变形处理的一族规则。可供选取的这一种或那一种对应关系(特定的变形规则)称为密钥。数字信号可以直接由相同速率的序列密码加密。数字保密是否能被破译,主要取决于序列密码的性质,如果序列密码是随机的和不重复使用的,即一次一密体制,便不可能被破译。事实上序列密码通常是由有限的随机数组成的密钥,通过一个算法器产生的序列,不论这个算法器怎样复杂,总是属于有限状态机。因此,输出的序列终归是周期性的伪随机序列。为了不重复使用,密码的周期应大于最长的信号持续时间。实现这一点并不困难,较复杂的序列密码的周期往往以若干年来计算。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条