说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 束缚光学极化子
1)  Bound optical polaron
束缚光学极化子
1.
Since the 1980s, Takuda investigated the optical polaron bound in a Coulomb potential within themodified variational scheme of the LLP theory, some investigators started to study the bound optical polaron in varia-tional physics models from theory or experiment f.
采用线性组合算符和么正变换方法研究强弱耦合情形下,库仑场中束缚光学极化子的基态能量、振动频率和平均声子数与温度的关系。
2)  Bound polaron
束缚极化子
1.
The bound polaron in a polar slab;
极性晶体膜中束缚极化子的有效质量
2.
Taking into account the interaction of an electron with bulk longitudinal-optical(LO) and surface longitudinal-optical(SO) phonons,we studied the effective mass of the bound polaron in a polar slab by using the method of Green s function.
采用格林函数的方法,研究极性晶体膜中束缚极化子的有效质量随膜厚d的变化关系。
3.
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods,which are valid in the whole range of electron-LO phonon coupling.
采用线性组合算符及幺正变换方法研究了电场对量子阱弱耦合束缚极化子的性质的影响。
3)  Bound magnetopolaron
束缚磁极化子
1.
The influence of the electric field on the properties of the bound magnetopolaron in an infinite-depth GaAs semiconductor quantum well is investigated using the linear-combination operator and the unitary transformation method.
研究了在外加电场作用下无限深GaAs半导体量子阱中束缚磁极化子的性质,采用线性组合算符及幺正变换方法导出了量子阱中弱耦合束缚磁极化子的基态能量与阱宽、电场强度、磁感应强度、库仑束缚势的变化关系,同时讨论了振动频率和库仑束缚势、外场之间的变化关系。
2.
The relations of the vibrational frequency,the ground state energy,and the mean number of phonons of the strong-coupling bound magnetopolaron in a quantum dot with the temperature are derived.
采用线性组合算符和幺正变换方法研究量子点中强耦合束缚磁极化子性质的温度依赖性,导出了强耦合束缚磁极化子的振动频率、基态能量和声子平均数随温度的变化关系。
3.
The relations between the vibration frequency and the ground state energy of a strong-coupling bound magnetopolaron in a semiconductor quantum dot with the confinement length of the quantum dot,the Coulomb bound potential,cyclotron resonance frequency of magnetic field,and electron-phonon coupling .
导出了强耦合束缚磁极化子的振动频率和基态能量与量子点的有效受限长度、库仑束缚势、磁场的回旋共振频率和电子-声子耦合强度的变化关系。
4)  Double bound polaron
双束缚极化子
5)  impurity bound polaron
杂质束缚极化子
1.
The relations of the vibrational frequency,the ground state energy and the ground state binding energy of weak-coupling impurity bound polaron in a quantum rod with the Coulomb bound potential,the electron-phonon coupling strength and the aspect ratio of the ellipsoid are studied by using the linear combination operator and the unitary transformation methods.
采用线性组合算符和幺正变换的方法,研究了在非均匀抛物限制势下量子棒中弱耦合杂质束缚极化子的振动频率、基态能量和基态结合能随库仑束缚势、电子-声子耦合强度和椭球的纵横比的变化关系。
6)  strong-coupling bound polaron
强耦合束缚极化子
1.
The relations of the vibrational frequency,the ground state energy and the ground state binding energy of strong-coupling bound polaron in an asymmetric quantum dot with the transverse and the longitudinal effective confinement length of quantum dot,the Coulomb bound potential and the electron-phonon coupling strength were derived.
导出了非对称量子点中强耦合束缚极化子的振动频率、基态能量和基态结合能随量子点的横向和纵向有效受限长度,库仑束缚势和电子-声子耦合强度的变化关系。
补充资料:非线性光学极化率
      描述在强光场下介质非线性极化强度的一个物理量。介质在强光场作用下要产生非线性极化(见非线性光学)。但是,同一光场作用在不同介质,或同一强度但不同偏振、不同频率成分的光场作用在同一介质,产生的非线性极化强度都可能是不同的。
  
  设有l个光波作用于介质,其频率分别为ω1、ω2、...、ωl,其偏振方向分别为α1、α2、...、αl (其中任一αi可以是x、y、z),则所产生的频率为ωo=ω1+ω2+...+ωl
  的l阶极化强度应与上述l个光波的电场成正比。该比例关系可由下式表达
  ,
  式中是该极化强度的αo分量的复振幅;、、... 分别为上述 l个光波电场的复振幅。式中的比例系数称为l 阶非线性极化率。这种复杂的标志方式意味着它的数值既与介质有关,又与作用的光波频率有关,还与各个光波的偏振方向以及极化强度的不同分量有关。事实上,由上述频率成分的光波还可以产生频率为这些频率的其他和差组合的 l阶极化。如果认为上面那些表达式中的任一ωi(i=1,2,...,l) 均既可取其真正频率的正值也可取其负值,且认为(*号表示复共轭),则上述关系式仍可用以表达这种频率为作用光波频率的和差组合的极化强度。而且,其中的 就是相应于该频率组合的l阶非线性极化率。这样,一般说来,非线性极化率的数值就不仅与各个作用光波的频率有关,而且与其和差组合的形式有关。例如,两个频率不同的光波,其和频极化率与差频极化率一般是不同的。
  
  由于共有l+1个角标,每一个角标αi(i=0,1,...,l)又可取三个值x、y和z,故l阶非线性极化率是一个三维l+1阶张量,共有个张量元。
  
  非线性极化率是物质的一个常数。不同张量元之间往往有一定的关系,称为张量元之间具有一定的对称性。已知,非线性极化率张量元之间有两种类型的对称性。一类是与物质的空间对称性无关的固有置换对称性。例如,α1、α2 ...αl中的任意两个角标αα与αb互换,与此同时相应地ωα与ωb互换,的值不变。当所有频率都落在非线性晶体的同一透明区时所具有的克兰曼全对称性也属这类。这指的是当αo与α1、α2 ...αl中的任一αα互换的同时,-ωo也与ωα互换,则的值也不变。另一类对称性是与物质的空间对称性有关的对称性。也就是说,具有某种确定空间对称性的介质,其非线性极化率张量元之间也必然有某种确定的关系,这种关系只与介质的空间对称性有关,与介质的其他性质无关。因而,只要其空间对称性相同,不论是何种介质,这种关系都是一样的。例如,各向同性介质或具有中心对称的晶体,二阶非线性极化率均为零。又例如,各向同性介质的三阶非线性极化率张量元共有243个元素,但只有以下一些张量元不为零:(其中i=x、y、z,j=x、y、z)。而且它们之间存在以下确定的关系:因此,实际上独立的张量元只有三个。
  
  考虑到在非线性晶体的透明区,二阶非线性极化率往往与频率的关系不大并因而交换j、k两角标时其值不变,故有时也可将其中的角标(j,k)用一个约化指标m来表示。其对应关系为
  这样变更后的表示为d(i=1,2,3,m=1,2,3,4,5,6),并可将其排列成一个长方形矩阵
  dij习惯上称为非线性系数。
  
  由二阶非线性系数还可派生出倍频系数、有效非线性系数等物质常数。这些常数与二阶非线性系数都有直接的对应关系。但在分析晶体的光学倍频、混频等效应时用起来更方便。
  
  非线性极化率是非线性光学中的重要常数。由它的对称性和大小可预测各种非线性光学效应的许多特性。例如,由其二阶非线性极化率为零的性质即可断言,各向同性介质或具有中心对称的晶体,不存在任何二阶非线性光学效应。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条