说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Sub-100nm
1)  Sub 100 nm film
Sub-100nm
2)  Sub-100nm
亚100nm
1.
New Structure and Device Performance Research of Sub-100nm SOI MOSFET;
亚100nm SOIMOSFET器件新结构及其性能研究
3)  S2L Sub-LSP
Sub-LSP
4)  submod
Sub-model
5)  vitamin B1
维生素B1
6)  vitamin B2
维生素B2
补充资料:Ap
      保证某些算子在加权勒贝格空间Lp有界的权函数。设T是Lp(Rn)到Lp(Rn)的有界算子,即对任意?? ∈Lp(Rn),有
  
  
  式中C与??无关, 积分中的dx为勒贝格测度。设ω(x)≥0是定义在Rn上的局部可积函数。问题是ω(x)满足什么样的条件,可保证算子T是Lp(Rn,ω(x)dx)到Lp(Rn,ω(x)dx)的有界算子,即对任意?? ∈Lp(Rn,ω(x)dx),有
  
  式中C与?? 无关。1972年B.穆肯霍普特提出了下面的Ap条件。所谓ω(x)满足Ap条件(1,使不等式 (1)对Rn中所有的方块Q成立。这条件的意思是ω在Q的平均值与在Q 的平均值的p-1次幂的乘积是有界的。对p=1,所谓ω(x)满足A1条件,是指不等式对Rn中的所有方块Q成立,式中C与Q无关。这意思是ω(x)在Q的平均值可以被ω(x)在Q的本性下界控制。这是等式(1)的极限情形。
  
   最后,所谓ω(x)满足A条件,是指存在常数C与δ>0,使得对Rn中的任意方块Q以及Q中的任意勒贝格可测集E,有,式中|E|表示 E的勒贝格测度。这条件的意思是指用ω(x)dx定义的测度,与勒贝格测度在某种意义下是可比较的。如果ω(x)满足Ap条件,就说ω(x)是一个Ap权。全体Ap权构成的函数集合也用Ap表示。1972年,穆肯霍普特首先证明了,若 T是哈代-李特尔伍德极大函数M,即,
  则M(??)是Lp(Rn,ω(x)dx)到Lp(Rn,ω(x)dx)的有界算子的充分必要条件是ω是Ap权(1p(Rn,ω(x)dx)到Lp(Rn,ω(x)dx),有界算子的充分必要条件也是ω为Ap权(1  
  上述结果对p=1与p=∞并不成立,但A1、A在有关理论中也是两类十分重要的权函数。它们与Ap有密切的关系。粗略地说就是,A1是全体Ap的公共部分,而A是包含全体Ap的最小集合。用符号写出来就是 P.琼斯于 1980年证明了Ap权的分解定理。这就是,设1∈Ap的充分必要条件是,其中ω12∈A1。这就有可能把对Ap问题的讨论归结为A1
  
  Ap权与哈代-李特尔伍德极大函数,BMO空间等有密切联系。例如,设?? 是任意的局部可积函数,M(??)是它的哈代-李特尔伍德极大函数,0<δ<1,则(M(??))δ∈A1。又如,设b是Rn的局部可积函数,则b∈BMO的充分必要条件是存在ε>0,使得eεb∈A2
  
  Ap权具有一个很重要的性质,即它满足反向赫尔德不等式:若ω∈Ap,1≤p<∞,则存在δ>0与常数C,使得对Rn中的所有方块Q成立。这一性质在近代偏微分方程理论中有重要的应用。
  
  Ap权是近代调和分析的一个重要工具。
  
  

参考书目
   B. Muckenhoupt, Weighted Norm Inequalities for the Hardy Maximal function,(Trans.Amer.math.Soc.Vol.165,pp.207~226,1972.
   R.R.Coifman and C.feferman, Weighted Norm Inequalities ??or Maximal functions and Singular Integrals,Studia Math.,Vol.51,pp.241~250,1974.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条