说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 泛线性广义函数
1)  Pan-linear distribution
泛线性广义函数
1.
Definiting pan-linear distributions to generalize distribution space to non-lineardistribution space.
本文将一类非线性算子即解剖算子作用在基本函数空间上,定义了泛线性广义函数
2.
Meanwhile, the family of dissecttingoperators given by Professor Li is used to develop the theory of distributions; it producesa new distribution–pan-linear distribution.
特别是我的导师李容录教授对三类很大的包含全部线性算子和许多非线性算子的映射族分别建立了新的三大基本原理;他给出的解剖映射同时也全面改进了广义函数理论,给出了新的广义函数-泛线性广义函数,从而使泛函分析的理论价值与应用范围分别提升和扩大到新的高度。
2)  pan-linear distributions
泛线性广义函数
1.
, dissecting mappings on the test functions space,the usual distributions was generalized to pan-linear distributions,and then the forms,structure and basic differential properties of pan-linear distributions were discussed.
将一类非线性映射即解剖映射作用在基本函数空间上,定义了泛线性广义函数,从而将线性广义函数推广到泛线性广义函数上。
3)  the differentiation of pan-linear distribution function
泛线性广义函数的微分
4)  generalized linear functional
广义线性泛函
1.
To solve Fredholm integral equations of the second kind,a generalized linear functional is introduced and a new function-valued Padé-type approximation was defined.
为了求解第二类Fredholm积分方程,引入了一个广义线性泛函,从而定义了一种新的函数值Padé_型逼近。
5)  generalized linear functions
广义线性函数
1.
Applications of generalized linear functions to analog circuits fault diagnosis are studied and an algorithm for the location of fault elements and the determina- tion of the changes of the el.
本文引用广义线性函数的概念,对元件的容差进行类线性处理,并且弱化了元件参数变化和输出增量之间的非线性关系,提出了等效的支路故障值概念。
6)  Generalized functional
广义泛函
补充资料:广义函数
广义函数
generalized function,distribution

   古典函数概念的推广。关于广义函数的研究构成了泛函分析中有着广泛应用的一个重要分支。历史上第一个广义函数是由物理学家P.A.M.狄拉克引进的,他因为陈述量子力学中某些量的关系时需要引入了“函数”δx):当x≠0时,δx)=0,但!!!G1160_1。按20世纪前所形成的数学概念是无法理解这样奇怪的函数的。然而物理学上一切点量,如点质量、点电荷、偶极子、瞬时打击力、瞬时源等物理量用它来描述不仅方便、物理含义清楚,而且当它被当作普通函数参加运算,如对它进行微分和傅里叶变换,将它参与微分方程求解等所得到的数学结论和物理结论是吻合的。这就迫使人们要为这类怪函数确立严格的数学基础。最初理解的方式之一是把这种怪函数设想成直线上某种分布所相应的“密度”函数。所以广义函数又称为分布,广义函数论又称分布理论。用分布的观念为这些怪函数建立基础虽然很直观,但对于复杂情况就又显得繁琐而不很明确。后来随着泛函分析的发展,L.施瓦尔茨(1945)用泛函分析观点为广义函数建立了一整套严格的理论,接着I.M.盖尔范德对广义函数论又作了重要发展。从此,广义函数被广泛地应用于数学、物理、力学以及分析数学的其他各个分支,例如微分方程、随机过程、流形理论等等,它还被应用到群的表示理论,特别是它有力地促进了偏微分方程近30年来的发展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。