1)  electrical double layer
界面双电层
2)  interface
界面
1.
Effect of an electromagnetic field on precipitates in the composite interface of Al-Mg/Al-Si;
电磁场对Al-Mg/Al-Si复合界面析出相的影响
2.
Investigation on microstructure at the bonding interface of TiC cermet/steel composite plate prepared by explosive welding;
TiC硬质合金/碳钢爆炸焊接复合板界面微观组织
3.
Effect of nano ZrO_2 crystal structure on copper matrix composite interface;
纳米ZrO_2晶型对铜基复合材料界面的影响
3)  interphase
界面
1.
Advances in Research of the Interphase in Multi-Phase Polymers;
多相聚合物体系相界面研究进展
2.
Densities of the composites with or without C/SiC interphase are about 1.
当C/SiC界面涂层存在时,气相渗硅C_f/SiC强度为239。
3.
The interphase of glass state carbon appeared between the matrix and reinforced phase, which resulted in weak joint.
研究表明:材料表现出脆性断裂的破坏失效特征;SiCp/SiC复合材料内部颗粒间、团聚体之间残留的微孔和孔隙等薄弱环节使材料的强度降低;复合材料基体和增强相之间有一层由树脂热解而产生的玻璃碳,造成界面的弱结合,使材料强度不高。
4)  ⅠandⅡinterfaces
Ⅰ,Ⅱ界面
5)  boundary
界面
1.
Moving Chemical Reaction Boundary Formed by Strong Reaction Electrolytes: Theory;
由强反应电解质形成的移动化学反应界面:理论(英文)
2.
Stationary Chemical Reaction Boundary: Theory and Test;
静止化学反应界面:理论和验证(英文)
6)  second interface
Ⅱ界面
1.
Based on field data and analysis of methods adopted by others, this paper presents a simple but effective method to evaluate cementing quality of second interface.
声幅 -变密度测井技术可以有效地评价固井Ⅰ界面 (套管和水泥环 )的胶结质量 ,但对固井Ⅱ界面 (水泥环和地层 )胶结质量的评价方法研究还不够完善。
2.
No effective methodology for cementing evaluation, especially for identification of second interface cementation and annulus cement packing on account of formation media difference and the characteristic complexity for wave propagation.
由于地层介质的差异性,波在其中的传播表现出极其复杂的特征,导致固井质量的评价特别是Ⅱ界面胶结状况的判别一直缺乏有效的方法。
参考词条
补充资料:矿物界面双电层


矿物界面双电层
electric double layer at mineral water interface

  kuongwu jlem一an Shuangd一aneeng矿物界面双电层(eleetric double laye:atmineral一water interfaee)水溶液中矿物一水界面荷电后形成的阳离子层和阴离子层。荷电的矿物界面吸引水溶液中符号相反的离子,在其表面形成双电层。曾有过几种双电层的结构模型,在浮选理论研究中广泛应用斯特恩双电层结构模型。 斯特恩(Stern)模型(见图)的基本点是双电层由 /固体表面、斯特恩层(紧密层) 内层与刊巴甲_扩依层 划{、I){ “‘性一一 育布产距离 双电层结构的斯特恩模型三部分组成:(1)固体表面层(包括内层吸附的离子)构成内层;(2)在固体外部吸附的与内层电荷符号相反的离子,称为反离子,它一方面受固体表面电场的作用,另一方面由于不规则热运动构成外部扩散结构,称为扩散层;(3)紧贴固相表面有一薄层,将内层与扩散层分开,称为斯特恩层或紧密层。这一层的厚度大致等于水化离子的半径,以a代表。这三个层习惯称为内层、紧密层和扩散层。双电层内层由组成晶格的离子和在内层吸附的离子组成,内层的电位称为表面电位,以必。表示。它的大小取决于矿物本身的性质和溶液中定位离子的数量与性质。紧密层紧贴在固相表面,当荷电的矿物粒子在电场作用下发生运动时,紧密层与扩散层之间存在一个滑动界面,滑动界面以外的反离子将随溶液一起运动,故紧密层内吸附的离子对矿物的浮选起重要的作用。在矿物表面产生特性吸附的离子一般认为是在紧密层的吸附。紧密层的电位以咖表示。滑动界面上电位和溶液内部的电位差称电动电位省。一般情况下,咨与必;很接近,可认为相等。电动电位可用一定的方法测出,故常用电动电位而不用咖。扩散层厚度随溶液中电解质浓度而变,可以延伸得很厚,一般认为可以用离子氛的厚度来估算。离子氛的厚度等于德拜一休克尔常数二倒数的平均值、贵)。这一厚度称双电层的等效厚度。反离子可以延伸得很远,绝大多数反离子集中在厚为(告)层内。这一厚度与溶液中电~~’,J~’一,丁/砂“K产’“’刁“~’J~廿‘曰‘沐’~解质浓度的平方根成反比,故在稀的电解质溶液中扩散层可以很厚。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。