1) Volterra type integral equation
Volterra型积分方程
1.
In this paper,the concept of condition contraction operator is defined,the existence of fixed points of this class of operators and the existence as well as the uniqueness of solutions for nonlinear Volterra type integral equations in Banach spaces are discussed.
给出了Banach空间条件压缩算子定义,讨论了此类算子不动点的存在性和Banach空间中非线性Volterra型积分方程解的存在性和唯一性。
2) Volterra integral equation
Volterra型积分方程
1.
The Unique Solution of Nonlinear Impulsive Volterra Integral Equation in Banach Space;
Banach空间中非线性脉冲Volterra型积分方程的唯一解
2.
The relationship between the approximate and exact solutions of a class of nonlinear Volterra integral equations is considered.
首先在Banach空间中考虑一类非线性Volterra型积分方程的逼近解与精确解之间的关系,由此并通过比较定理在紧型条件下获得方程解的存在性结果。
3) Volterra type integral equations
Volterra型积分方程
1.
Several fixed point theorems and applications for Volterra type integral equations;
几个不动点定理及其在Volterra型积分方程中的应用
2.
In this paper, an existence theorem on the coupled minimal and maximal positive solutions for a class of discontinuous nonlinear Volterra type integral equations involving linear Fredholm type integral in ordered Banach spaces is obtained.
在Banach空间中得到了一类含有线性Fredholm型积分的不连续非线性Volterra型积分方程的耦合正解 。
3.
In this paper,an existence theorem on the coupled minimal and maximal positive solutions for a class of discontinuous nonmonotone Volterra type integral equations in Banach spaces is obtained.
在Banach空间中得到了一类不连续非增Volterra型积分方程的最大最小耦合正解 ,并给出了不连续非增Volterra型积分方程初值问题的应用 。
4) Volterra integral equation
Volterra积分方程
1.
The Existence Theorems of Volterra Integral Equations;
Volterra积分方程解的存在性
2.
In this paper,our main purpose is to introduce the theorem of Banach Contraction Mapping and the application of the System of Linear Eqations,Implicit Function existence,Ordinary Differential Equation and the Volterra Integral Equation.
文章介绍了压缩映象原理及其在解决线性方程组、隐函数存在性、常微分方程和Volterra积分方程解的存在唯一性等四个方面的重要应用。
3.
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems.
对于径向变形的压电空心圆柱和空心球弹性动力学问题,丁皓江等最近的研究表明,可以将它转变为关于一个时间函数的第二类Volterra积分方程,使求解工作得到极大的简化,又使探索第二类Volterra积分方程的快速而又高精度的数值解法成为一个关键。
5) Volterra type integro-differential-difference equation
Volterra型积分微分差分方程
1.
Singularly perturbed nonlinear boundary problem of second order Volterra type integro-differential-difference equation;
二阶Volterra型积分微分差分方程的非线性边值问题的奇摄动
2.
The existence and uniqueness and asymptotic estimates of solution for nonlinear boundary value problem of Volterra type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式理论研究了二阶Volterra型积分微分差分方程非线性边值问题的解的存在性。
6) Volterra type integro-differential equation
Volterra型积分微分方程
1.
Singular perturbation of Volterra type integro-differential equation for nonlinear boundary value problems;
利用微分不等式理论研究了二阶Volterra型积分微分方程非线性边值问题的解的存在性。
补充资料:卷积型积分方程
卷积型积分方程
integral equation of convolution type
卷积型积分方程【加魄间闪娜七.ofc傲IVI汕浦.lty碑;“,Te印~oeyP二HeHHe THna cBeP~l 在卷积变换的积分号下包含未知函数的积分方程(见积分算子(访teg那1 oPelator)).卷积型积分方程的独特性是这种方程的核依赖于自变量的差.最简单的例子是方程 。(:)一丁、(。一:),(:)d;一f(。),一。<:<二, 一的(l)这里k和f是给定的函数而印是未知函数.设k,f〔L、(一的,的)且在同一类中寻求解.为了(l)可解,必要充分条件是 l一K(又)尹0,一的<又<田,(2)这里K是k的F砚时曰变换(Founer tmnsfonn).当(2)成立时,方程(l)在类Ll中有唯一的解,用公式 ,(x)一f(x)一丁、1(x一:)f(。)、:(3)表示,这里kl‘L;(一二,的)是由其FouJ交r变换 K.(几)=l一[l一‘(又)]一’唯一确定的.半直线上卷积型方程(Wk,er一HOPf方程(Wiener一HoPf闪Uation)) ,(:)一丁、(。一:),(:)d:一f(:),0‘。<。, 0 (4)在研究各种具有理论和实用特征的问题中产生(见【11,阱」). 设右边f和未知函数甲属于L,(0,的)(1毛p簇的),核k6L,(一叨,co)且以劝“1一K(劝笋0,一的<又<的.(5) 函数“(对称为方程(4)的象征(s抑喊).方程(4) 的指标(访dex)是数 、一耐:一兴i己;arg。).。6) 一2兀J一‘一”‘、“,·、。少 如果K=0,则由方程 ,·K·(,卜exp卜告h·(;)· 二1「Ina(r、 士二二-甲见二二二二止止目d二 2二i几:一又一‘ 定义的函数K、,K一分别是函数k+,k_‘L,(一的, 的)的Fo~变换,使得对t<0,k、(t)=k_(一t) 二0.在上面的条件下,方程(4)有唯一解,它可以 用公式 ,(才)一f(‘,+丁厂(‘,:),(:)d:(8) 0 表示,这里 r(t,;)”此十(t一:)+左一(t一;)+ +丁、+(:一:)、一(:一;)、:. 0如果K<0,方程(4)的所有解用公式 。(。)一厂(。)+*睿1·*:*一+ ·)一‘!,·,〔‘(·)·落,·*一〕‘·(9)给出,这里c*是任意常数, r。(t,;)二k望,(t一:)+介望’(r一;)+ +f、望,(:一:)k臼,(:一;)、:,(,o) 0且函数k(:),人望’〔L,(一。,。)是由它们的FOuner变换: l+尺仁’(又)二fl+K;0,(又)l(又十i)‘(又一i)一“, (11) 1+K望)(又)= 一exp「一冬In。(*)*共了鱼立位工了. 一f LZ一、八’2:i丈:一又」’ ‘,,、_「,。,.、、「又一卜11‘ 。(、,一。,一K‘“,,L廿J唯一决定的. 当K<0时,对应于〔4)的齐次方程恰有)刻个线性无关解切,,…,叭、,它们在任何有界区间上是绝对连续函数;可以选取这些解,使得对k二l,…,}、卜1,职*,,(t)二势妥(t),沪*(o)一o,而气.(o)笋0 如果K>O,这方程可解仅当以下条件成立: 丁.厂(:)*,(。)、:一。,、一1.…,‘,(,2) O这里价:,二,价‘是(4)的转置齐次方程: *(;)一J、(:一‘)*(:)碑:一。(,3) 0的一个线性无关解系.在这些条件下,这(唯一的)解由公式 ,(。)一f(‘)+了;、(:,:)f(:)“:(,4) 0给出,这里 r.(t,:)二k望’(t一:)+k(--0,(t一:)+ +丁、望,(‘一:,、:,(:一:)、:, 0而函数k华,(r),kU,(t)6L,(一二,二)的Founer变换Kto)(对和K望’(劝由方程 r.‘.,‘、_。1.。‘〔,、,.、、「,+11“ l+、:,(、卜「,+K赚”‘“,’L令全幸」和方程(11)定义.对方程(4),M又1」ler的定理成立(见奇异积分方程(5111邵har jntel笋d叫吸加n)). 方程(4)的理论中第一批有意义的结果在汇川中得到、其中为了解对应于(4)的齐次方程,给出了一个有效方法(所谓wi~一HoPf法(从金n口一HoPfmetllod)),该法要求假设核和所求解满足条件:对某对O<“分解(facto丘乙-tion of a filllction)的想法,即把h(劝表成积h尸一(劝·h*(对的可能性,其中h_,h,分别是半平面Im又一a上的全纯函数,且满足一定的附加要求.这些结果已经得到发展和增强(见汇41). 已经发展了一种把方程(4)化成线性识别的边值问题的方法.按这种方法,方程(4)在以下假设下己有解:k‘L、,2(一阅,的),K6Lip。(一田,co)(0<:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条