说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> EWMA标准差控制图
1)  EWMA standard deviation control chart
EWMA标准差控制图
2)  EWMA control chart
EWMA控制图
1.
Study on EWMA control chart for the process clustering based on monte carlo method;
蒙特卡罗方法的过程聚类EWMA控制图研究
2.
The ARL of EWMA control chart based on the multi-mixture distribution;
多元混合分布的EWMA控制图的平均链长
3.
Performance analysis and optimization of EWMA control chart based on Markov chain model;
基于马尔可夫链模型的EWMA控制图性能分析与优化
3)  Poisson EWMA Control Chart
Poisson EWMA控制图
1.
Steady-state Poisson EWMA Control Chart With Variable Sampling Intervals;
平稳状态的VSI Poisson EWMA控制图
4)  standard deviation charts
标准差控制图
1.
We propose the eight criteria for determining the singularity of asymmetrical standard deviation charts based on the eight criteria for determining the singularity of chart in this article and work out their alert rates.
在标准差控制图的八个判异准则基础上,提出了相应的非对称标准差控制图的判异准则,分别给出了它们的实际报警率,并讨论了八个准则应用在标准差控制图时的平均运行长度。
5)  two-dimensional EWMA control chart
二维EWMA控制图
6)  EWMA Mean Control Chart
EWMA均值控制图
1.
An EWMA Mean Control Chart With Variable Sampling Intervals under Non-normality;
可变抽样区间的非正态EWMA均值控制图
补充资料:标准差

标准差概述

  标准差是一种表示分散程度的统计观念,主要是根据基金净值于一段时间内波动的情况计算而来的。标准差已广泛运用在股票以及共同基金投资风险的衡量上,主要是根据基金净值于一段时间内波动的情况计算而来的。一般而言,标准差愈大,表示净值的涨跌较剧烈,风险程度也较大。实务的运作上,您可进一步运用单位风险报酬率的概念,同时将报酬率的风险因素考虑在内。所谓单位风险报酬率是指衡量投资人每承担 一单位的风险,所能得到的报酬,以夏普指数最常为投资人运用。

  标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

  例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。

  标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为值都落在一定数值范围之外,可以合理推论预测值是否正确。

[编辑]

标准差的简易计算公式

  假设有一组数值 x1, ..., xN (皆为实数),其平均值为:

  \overline{x}=\frac{1}{N}\sum_{i=1}^N x_i

  此组数值的标准差为:

  \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}

  一个较快求解的方式为:

  \sigma = \sqrt{{\sum_{i=1}^N x_i^2}\over{N}\left({\sum_{i=1}^N{x_i}\over{N}}\right)^2\ } = \sqrt{\frac{N\sum_{i=1}^N{{x_i}^2} - \left(\sum_{i=1}^N{x_i}\right)^2}{N^2}}

  一随机变量X 的标准差定义为:

  \sigma = \sqrt{\operatorname{E}((X-\operatorname{E}X)^2)} = \sqrt{\operatorname{E}(X^2) - (\operatorname{E}(X))^2}

  须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。 如果随机变量 X 为 x1,...,xN 具有相同机率,则可用上述公式计算标准差。从一大组数值当中取出一样本数值组合 x1,...,xn ,常定义其样本标准差:

  s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2}

[编辑]

范例

  这里示范如何计算一组数的标准差。例如一群孩童年龄的数值为 { 5, 6, 8, 9 } :

  第一步,计算平均值

  \overline{x}

  \overline{x}=\frac{1}{N}\sum_{i=1}^N x_i

  n = 4 (因为集合里有 4 个数),分别设为:

  x_1 = 5\,\!

  x_2 = 6\,\!

  x_3 = 8\,\!

  x_4 = 9\,\!

  \overline{x}=\frac{1}{4}\sum_{i=1}^4 x_i 用 4 取代 N

  \overline{x}=\frac{1}{4} \left ( x_1 + x_2 + x_3 +x_4 \right )

  \overline{x}=\frac{1}{4} \left ( 5 + 6 + 8 + 9 \right )

  \overline{x}= 7此为平均值。

  第二步,计算标准差\sigma\,\!

  \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}

  \sigma = \sqrt{\frac{1}{4} \sum_{i=1}^4 (x_i - \overline{x})^2} 用 4 取代 N

  \sigma = \sqrt{\frac{1}{4} \sum_{i=1}^4 (x_i - 7)^2}用 7 取代 \overline{x}

  \sigma = \sqrt{\frac{1}{4} \left [ (x_1 - 7)^2 + (x_2 - 7)^2 + (x_3 - 7)^2 + (x_4 - 7)^2 \right ] }

  \sigma = \sqrt{\frac{1}{4} \left [ (5 - 7)^2 + (6 - 7)^2 + (8 - 7)^2 + (9 - 7)^2 \right ] }

  \sigma = \sqrt{\frac{1}{4} \left ( (-2)^2 + (-1)^2 + 1^2 + 2^2 \right ) }

  \sigma = \sqrt{\frac{1}{4} \left ( 4 + 1 + 1 + 4 \right ) }

  \sigma = \sqrt{\frac{10}{4}}

  \sigma = 1.5811\,\!

[编辑]

标准差与平均值之间的关系

  一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一"自然"的测量。较确切的叙述为:假设 x1, ..., xn 为实数,定义其公式

  \sigma(r) = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - r)^2}

使用微积分,不难算出 σ(r) 在下面情况下具有唯一最小值:

  r = \overline{x}

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条