说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 二元算子方程组 1)  systems of two binary operator equations 二元算子方程组 1. Using the cone and monotone iterative theory, the existence and uniqueness of solutions for three classes of systems of two binary operator equations in Banach space are discussed, and the error estimations for the convergent iterative sequence are also given. 利用锥理论和单调迭代方法,本文在Banach空间中对三类二元算子方程组的求解进行了探讨,利用较简捷的条件得出方程组的唯一解和迭代逼近式及误差估计式并推广到了n元算子方程组的情形,得到相应结果。 2. Using the cone and partial ordering theory and monotone iterative method in some weaker conditions ,the existence of maxmal and minimal solutions for some classes of systems of two binary operator equations are discussed. 利用锥理论和单调迭代方法,本文在Banach空间对一类二元算子方程组的求解进行了探讨,利用较简捷的务件,得出方程组的最小最大解和最大最小解,及其上下控制逼近式。 3. By using the cone theory and monotone iterative technique,the existence and uniqueness of the solutions for a kind of nonlinear non-monotone systems of two binary operator equations,and their convergent iterative sequence and error estimations are obtained. 利用锥理论和单调迭代技巧,得到了一类非线性非单调二元算子方程组的解的存在唯一性、迭代逼近序列及误差估计式。 2)  system of two element equations 二元方程组 1. This paper prasents a domain section method of solving the system of two element equations, by which an existent domain of solution of the system can be determined and an approximate solution can beobtained by sectioning the domain. 本文提出了一种用于求解二元方程组的区域剖分法，这种方法通过确定包含方程组解的一个初始区域，再不断剖分这个区域来缩小搜寻的范围，从而获得方程组的满足一定精度的一个近似解。 3)  systems of operator equations 算子方程组 1. Some relevant results of two binary operators equations and systems of operator equations are improved and generalized. 利用锥与半序理论和混合单调算子理论,讨论半序Banach空间中几类非线性二元算子方程组的解的存在唯一 性,并给出迭代序列收敛于解的误差估计,改进和推广了关于二元算子方程和方程组可解性的相应结果。 4)  double variate combination operator 二元组合型算子 5)  double combination operator 二元组合算子 6)  binary linear equation group 二元一次方程组 1. From the application of facility equation to the application of binary linear equation group, distinct teaching content, versus the uniform students, the author used the same mathematical situations to carry out the teaching of 搈athematical situation and posing problems? As the development of cooperative learning between teachers and students, students?problem intention gradually came into being. 在讲授从“简易方程的应用”到“二元一次方程组的应用”过程中,不同的教学内容,对相同的学生,用相同的数学情境,进行“情境—问题”教学,随着师生合作学习的深入,学生的问题意识也在逐渐形成、不断强化。 补充资料：二元一次方程组 二元一次方程组的意义把具有相同未知数的二元一次方程合在一起,叫做二元一次方程组.解法二元一次方程组有两种解法,一种是代入消元法,加减消元法.例:1)x-y=32)3x-8y=143)x=y+3代入得３×（y+３)-8y=14y=-1所以x=2这个二元一次方程组的解x=2y=-1以上就是代入消元法. 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com