说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Godel不完全性定理
1)  Godel's Incompleteness Theorem
Godel不完全性定理
2)  Godel incompleteness theorems
Godel不完备性定理
1.
Non-logic discussion on Godel incompleteness theorems;
Godel不完备性定理的非形式化论述
3)  incompleteness theorem
不完全性定理
4)  Gdel's incompleteness theorem
哥德尔不完全性定理
1.
Gdel's incompleteness theorem and relations between mind and machine
哥德尔不完全性定理和“心灵与机器”的关系问题
5)  Imperfect Rationality
不完全理性
1.
Imperfect Rationality,Sentiment and Closed end fund Puzzle;
不完全理性、投资者情绪与封闭式基金之谜
6)  completeness theorem
完全性定理
1.
By an application of the completenesstheorem on relational semantics of the quantified normal modal systems with nested domains proved in Hughes and Cresswell’s method to prove a completeness theorem on relational algebraic semantics of those system.
本文首先讨论嵌套论域语义的相应代数语义并由Hughes和Cresswell在[5]中建立的关于具有嵌套论域的正规量词模态系统的关系语义完全性定理推出其相应的代数语义完全性定理:然后对于具有任意可变论域语义的正规系统,我们用Henkin方法给出其关于狭义Kripke语义的关系语义完全性定理,由此通过将关系语义转化为代数语义从而亦推得其代数语义完全性定理。
补充资料:不完全性定理
      证明论中的一条重要定理。由K.哥德尔于1931年证明,是数理逻辑发展史上的一个极为重要的定理。
  
  设有一个以皮亚诺自然数论为其子系统的、自身协调的(即不自相矛盾的)形式系统,暂记为 U;在形式系统中凡不含自由变元的公式叫做语句;如果语句 A和塡A在某形式系统内均不可证,则A就叫做该形式系统的不可判定语句。不完全性定理说,任何一个上述的系统U都必有一个不可判定语句A。依照排中律,A和塡A之间必有一个是真语句,故不完全性定理可改为:任何一个上述的系统 U都必有一个真语句是不能推出的。如果一个系统对任何语句 A能够推出A或推出塡A,则这个系统叫做完全系统,这样不完全性定理又可改述为:任何一个上述的系统 U必是不完全的。
  
  在证明不完全性定理时,主要是使用算术化方法,即先把形式系统中所使用的各符号都逐一给以一个自然数编号,然后依次对各公式也给以一个编号,再后又对各公式序列,例如证明中所使用的公式序列给以一个编号。凡属编号必须满足下列条件,即给出符号或公式或公式序列后,可以唯一地决定其编号。反之,当给出一个自然数后,则可以决定其是否用作编号,如果是,就可以唯一地决定其是符号的或者是公式的,还是公式序列的编号。满足这种条件的编号,叫做哥德尔编号。利用编号可以把有关形式系统的各性质用算术函数算术公式来表示。例如,可以作出一个算术公式 prov(a,b),使得prov(a,b)成立当且仅当编号为a的公式序列是对编号为b的公式的证明,这也表明证明关系是可以算术化的。有了这些(以及别的)算术函数算术公式后,就容易作出不可判定语句。
  
  根据不完全性定理的证明过程,还可以推得下列结论:如果包含皮亚诺自然数论为子系统的形式系统 U是协调的,则表示" U是协调的"这个事实的算术公式不可能在系统 U内证明,这个结果叫做第二不完全性定理。它也是证明论中很重要的结果。
  
  虽然证明关系、可证性、协调性等等是可以算术化的,但由不完全性定理却可推得:真假性是不能算术化的,亦即不可能找到一个算术公式tr(a)使得tr(a)成立,当且仅当以a为编号的公式A为真,也就是说,在系统U内下列公式tr(a)凮A(这里a为A的编号)是不可证的。这是不完全性定理的另一内容,它是由A.塔尔斯基首先给出的(见不可定义性理论)。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条