说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二次特征值
1)  quadratic eigenvalue problem
二次特征值
1.
Model Updating Method for Inverse Quadratic Eigenvalue Problems;
二次特征值逆问题的模型修正方法
2)  quadratic eigenvalue problem
二次特征值问题
1.
A Rice condition number of the quadratic eigenvalue problem with the analytic expansion method is derived,and a computational example is presented in the paper.
用解析展开方法得到了二次特征值问题的Rice条件数,并给出了数值例子来说明结果。
2.
By using the refined projection principle,the authors improved the second-order Arnoldi method(SOAR) for solving the quadratic eigenvalue problem,proposed a refined second-order Arnoldi method(RSOAR),and presented a practical algorithm.
利用精化投影原则,我们对求解二次特征值问题的二阶Arnold i方法(SOAR)进行改进,提出了精化的二阶Arnold i方法,并给出一个实用算法,最后给出一个数值算例,说明算法的有效性。
3.
This paper investigates the sensitivity of multiple eigenvalues and corresponding eigenvector matrices of a quadratic eigenvalue problem analytically dependent on several parameters.
本文研究解析依赖于多参数的二次特征值问题重特征值的灵敏度分析,得到了重特征值的方向导数,证明了相应的特征向量矩阵和特征值平均值的解析性,给出了其一阶偏导数的表达式。
3)  sub-eigenvalue
次特征值
1.
The paper has discussed such problims as the properties of sub-eigenvalue and sub-eigenvector of real-anti-sub-symmetric matrix,and its diagonalization.
讨论了实反次对称矩阵的次特征值与次特征向量的性质及实反次对称矩阵的对角化问题。
4)  sub-characteristic value
次特征值
1.
Some main properties of sub-characteristic value of general real matrix are given,and sub-characteristic value of(anti) asymmetric matrix,(anti) sub-symmetric matrix,sub-orthogonal matrix,involutary matrix and idempotent matrix is studied.
给出了一般实方阵次特征值的一些主要性质,并对(反)对称阵、(反)次对称阵、次正交矩阵,以及对合矩阵与幂等矩阵的次特征值的取值情况进行了研究,得到了一些新结果。
2.
This paper includes theorems such as the one that the real parts of the sub-characteristic values belonged to an n-square metapositive definite complex matrix are positive,and that if JA is a normal composite matrix,then A is a metapositive definite complex matrix if and only if the real part of the sub-characteristic value belonged to A is real.
研究了复矩阵的次正定性的性质和一系列充分必要条件,得到了“n阶次正定复矩阵的次特征值实部为正”与“当JA为复正规矩阵时,A是次正定复矩阵的充分必要条件是A的次特征值实部为正”等结论;讨论并给出了矩阵乘积是次正定复矩阵的充分和充要条件;得到了与著名的Ostrowski-Taussky不等式、Hadamard不等式、Oppenhein不等式等相应的重要结果。
3.
It was proved that the real parts of the sub-characteristic values of an n-order metapositive semi-definite matrix are positive and,when JA is a normal real matrix,then A is a metapositive semi-definite matrix if and only if the real part of the sub-characteristic value of A is real.
研究了次亚正定矩阵的性质和一系列充分必要条件,主要得到了2 个结论:(1) n阶次亚正定矩阵的次特征值实部为正;(2) 当JA为实正规矩阵时,A是次亚正定矩阵的充分必要条件是A 的次特征值实部为正。
5)  secondary eigenvalue
次特征值
1.
This paper discusses inverse problems of secondary eigenvalue for anti-skew-symmetric matrices on a linear manifold.
讨论了线性流形上次反对称矩阵的次特征值的反问题,给出了解存在的条件,并给出了解的通式。
6)  further features
二次特征
1.
In this paper, reduced and important further features are obtained by introducing Kernel Canonical Correlation Analysis(KCCA), and the binary tree based multi-class classification SVM is used to complete the classification task by these further features.
针对该问题,采用核典型相关分析方法进行原始特征的二次提取,得到简约而重要的二次特征。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条