说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 无穷矩阵代数
1)  infinite matrix algebra
无穷矩阵代数
1.
A note of infinite matrix algebras;
无穷矩阵代数的一个注记
2)  infinite matric operator algebra
无穷矩阵算子代数
3)  infinite matrix
无穷矩阵
1.
The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted.
研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。
2.
Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ.
λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数
3.
This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants.
指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。
4)  infinite-order linear equations
无穷阶矩阵
5)  infinite matrix ring
无穷矩阵环
1.
We discuss derivation on infinite matrix rings, and prove that every derivation ofinfinite matrix rings with a finite number of nonzcro entries on a ring R can be represented asthe sum of two special derivations.
讨论无穷矩阵环上的导子,证明了环R上有限个元素不为零的无穷矩阵坏的每个导子均可表示为两个特殊导子之和。
6)  infinite matrix Lie algebras
无限矩阵李代数
1.
In this paper, we define a wide_ranging class of Lie subalgebras of the infinite matrix Lie algebras g1 ∞(C) , and build the internal structure of the class of subalgebras under certain conditions.
在无限矩阵李代数 g1∞(C)中定义了一类广泛的李子代数 ,并在一定条件下刻划了这类子代数的内部结构 ,并证明其为单李代
补充资料:矩阵代数


矩阵代数
matrix algebra =?algebra of matrix

  矩阵代数[.吮习州俪或algebra of rnatrix;MaTp朋~6Pal 域F上所有nxn矩阵的全阵代数凡的一个子代数,F。中运算定义如下: 又a=IIAatj II,a十b=IIa。十b。小 a白一e一}一e。一l,e。一艺a‘,b,,, v一】其中长F,且a二{Ia洲,b=}}气}}〔凡.代数凡同构于F上一个n维向量空间的所有自同态的代数.F。在F上的维数等于陀2.每个有恒等元且在F上的维数不大于n的结合代数(见结合环与结合代数恤洛。c血ti记nn矛即d al罗bn巧”同构于凡的某个子代数.无恒等元且在F上的维数小于n的结合代数也可同构地嵌人凡.根据认乞记erb让团定理(Wedde比UrntheO~),代数凡是单的,即它仅有平凡的双边理想.代数凡的中心由F上所有n xn纯量矩阵组成.F。的全部可逆元的群是一般线性群(罗n巴司】」n既叮g旧uP)GL(。,F).凡的每个自同构(autoTnorphism)h都是内自同构: h(x)=txr一’,x任F。,t〔GL(。,F). 每个不可约矩阵代数(亦见不可约矩阵群(诉比u.cible宜以tr认gro叩))是单的.如果矩阵代数A是绝对可约的(例如,如果F是代数闭的),则当n>1时A=凡(B~ide定理(Bun招ide th幻m)).矩阵代数是半单的,当且仅当它完全可约(亦见完全可约矩阵群(com-Pletely一代过那脉nla川xgro叩)).不计共扼时,凡含唯一的极大幂零子代数—所有对角线元素为零的上三角矩阵构成的代数.凡有r维交换子代数,当且仅当 f”21 :、L丁」十‘(Schl江定理(Schur U工幻~)).在复数域C上,C。的极大交痪手代数的共扼类的集合在。<6的情形下是有限的,而当n>6时是无限的. 在凡中有Zn次标准恒等式: 艺(s,a)x。(:)…x。(2。)=o, 口‘52-其中又。表示对称数(s”血减rix grouP),sgn‘是置换6的符号,但没有次数更低的恒等式.[补注]F。常用的记法是M。(F)· 半单环结构的节几山韭比urn定理:半单环R是体兀上全阵环M。,(F‘)的一个有限直积,反之,每个这种形式的环是半单的.此外,F‘和”,均由R唯一决定. W曰derburn一Arijn定理(从b泪erburn一AItinth(泊-记m):右AI七n单环是一全矩阵环(E.Adin,1928;J.H.M.认傲泪鹿bum在1卯7年对有限维代数作了证明).此定理的深远推广是Jaco比on稠密定理,见结合环与结合代数(assocla石记n翔罗aildal罗bras)及【Al].
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条