说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正则方程组
1)  canonical systems
正则方程组
1.
Tree Hamiltonian canonical systems of four order rod vibration equation is obtained by substituting symmetry difference quotient for high order partial derivative.
本文用中心差商代替高阶偏导数, 将四阶杆振动方程转化成三种 Hamilton 正则方程组,然后利用辛欧拉中点格式分别对其数值求解,并对三种数值结果进行比较。
2.
The canonical systems of four order rod vibration equation is obtained by substituting symmetry difference quotient for high order partial derivative, and the numerical solution is computed by using symplectic Eulers mid-point scheme in this paper.
本文用中心差商代替高阶偏导数,将四阶杆振动方程转化成正则方程组,并利用辛欧拉中点格式数值求解。
2)  regular Hamiltonian equation
Hamilton正则方程组
3)  expanded regular system of equations
扩大正则方程组
4)  generalized canonical equations
广义正则方程组
5)  LLSM regular system of equations
LLSM正则方程组
1.
In this paper, we apply the techniques of Matrix Algebra to give the solution of LLSM regular system of equations in Fuzzy AHP and analyse the character of the solution.
运用矩阵代数的技巧给出了模糊层次分析法中LLSM正则方程组的解,并分析了解的特点。
6)  Canonical equation
正则方程
1.
Then we introduce the model to the Hamilton system and obtain the Hamilton canonical equation.
首先利用Hamilton原理对耦合结构进行建模,然后利用有限元方法将空间连续模型离散化,得到有限元模型,然后将模型导入到Hamilton系统中,获得Hamilton正则方程。
2.
From the mixed variational principle of thin plates, by selection of the statevariables and its dual variables the Hamilton type generalized variational principleand the Hamilton canonical equation are deduced.
本文通过薄板问题混合能变分原理,选用状态变量及其对偶变量,导出了一般的Hamilton型广义变分原理和Hamilton正则方程,这样就突破了欧几里德空间的限制,在Hamilton力学的数学框架辛几何空间中,对全状态相变量进行分离变量,并采用共轭辛正交归一关系,给出任意支承条件下薄板问题的辛精确解。
3.
In this paper, plane stress elastic problem is taken for example, Galerkin variational equation of canonical equation of its is firstly introduced.
 首先引入了Hamilton体系中平面应力弹性力学问题正则方程的Galerkin变分方程,证 明了Galerkin变分方程和目前文献中所用的Ritz。
补充资料:哈密顿正则方程
      经典力学中一组描写系统运动的一阶微分方程组。是W.R.哈密顿于1834年提出的,又称哈密顿方程或正则方程。哈密顿正则方程为 (1)
  式中H称为哈密顿函数,是广义动量pi和广义坐标qi及时间t的函数。H由式 (2)
  确定。括号外边的角标表示式中的妜i应该用N个方程pi= 解出N 个 妜i为 (E1,E2,...,EN;q1,q2,...,qN;t)的N 个函数,然后代入式(2)就得到哈密顿函数H。
  
  对于直角坐标变换到广义坐标的变换式虽然显含时间t,但是动能的表示式不明显地包含t,此时H=T2-T0+V,
  式中T2和T0可说明如下:用(E1,E2,...,EN;q1,q2,...,qN;t)表示的动能式T=T2+T1+T0,式中T2、T1和T0分别表示广义动量的二次齐次式、一次齐次式和不含广义动量的项。
  
  如果直角坐标变换到广义坐标的变换式不显含t,势函数V也不显含t,则
  
  T=T2,H=T+V。
  即对于保守系统,哈密顿函数是系统总机械能用广义动量表示的公式。
  
  正则方程式(1)是2N个一阶微分方程组,而拉格朗日方程是N个二阶微分方程组,都只适用于完整系统(见约束)的动力学方程组。
  
  由于式(1)的左边不再有变数q和p的导数,所以方程(1)成为如下形式的方程组
  
  
  
  保守系统的正则方程在天体力学和经典统计力学中有重要的应用。在天体力学中从可解的二体问题出发,逐渐添加其他星球的引力,可以把所用的哈密顿函数H,从简单改变成较复杂的 H┡。这是天体力学中的摄动法,用来解决考虑太阳和各种行星、卫星的引力作用下的行星运动,由此可制定行星和月球的星历表,在统计力学中的刘维定理就是应用正则方程推导出来的。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条