说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性中立型泛函微分方程
1)  nonlinear neutral functional differential equation
非线性中立型泛函微分方程
1.
In this paper,it is proved that,for nonlinear neutral functional differential equations with infinite delay,the uniform ultimate boundedness of solutions implies existence of periodic solutions.
证明了具无限时滞非线性中立型泛函微分方程解的一致最终有界性蕴涵周期解的存在性,推广了一些学者的主要结果。
2)  linear neutral functional differential equation
线性中立型泛函微分方程
1.
It had been proved that for linear neutral functional differential equations of D-operator type with infinite delay, there was a periodic solution if and only if there was a bounded solution.
本文以Cg空间为相空间,证明了具无限时滞D算子型线性中立型泛函微分方程存在周期解当且仅当存在有界解,得到了与以往结论互不包含的结果。
3)  neutral functional differential equation
中立型泛函微分方程
1.
Oscillation of a class of neutral functional differential equations;
一类中立型泛函微分方程的振动性
2.
Periodic solutions for second order neutral functional differential equation with complex deviating argumen;
具复杂偏差变元的二阶中立型泛函微分方程的周期解
3.
Stability Switches of Retarded Differential Difference Systems and Existence of Positive Periodic Solutions of Neutral Functional Differential Equations;
滞后型微分差分系统的稳定性开关及中立型泛函微分方程正周期解的存在性
4)  neutral type functional differential equation
中立型泛函微分方程
1.
By using theory of exponential type dichotomy and fixed point theory, the author establishes some sufficient conditions for ensuring existence and uniqueness of almost periodic solutions to neutral type functional differential equations with finite time-delay.
利用指数型二分性理论和不动点理论,建立一些保证一类具有限时滞的中立型泛函微分方程,论述其概周期解的存在性和唯一性的充分条件。
2.
A study is made on the almost periodic solutions to a class of neutral type functional differential equations with time delay.
研究一类具时滞的中立型泛函微分方程的概周期解 ,利用不动点定理及指数型二分性 ,得到其概周期解的存在唯一性及稳定
5)  neutral differential equation
中立型泛函微分方程
1.
Consider the oscillation of solutions of a firs torder neutral differential equations The sufficient condition which make every solutions of these equations oscillates are obtained Our theorems improves some known Results and are“sharp”condition
研究变系数中立型泛函微分方程的解的振动性问题 分别获得了保证两类中立型方程的所有解振动的充分条件 ,改进了已有的部分结果 ,而且在某种程度上 ,我们的结果是不可改进的。
2.
We discuss the stability of a class of linear neutral differential equations: [x(t)-∑mi=1aix(t-τi)]′=bx(t)+∑nj=1cjx(t-σj)By constructing Liapunov functional,the sufficient conditions of the asymptotic stability are obtained.
本文利用Lyapunov泛函,研究了一类多时滞线性中立型泛函微分方程x(t)-∑mi=1aix(t-τi)′=bx(t)+∑nj=1cjx(t-σj)的稳定性,并得到其零解渐近稳定的充分条件。
6)  neutral functional differential equations
中立型泛函微分方程
1.
By means of variational structure and Z_2 group index theory,we obtain a estimate for number of multiple periodic solutions to second-order neutral functional differential equations (cx(t)+x(t-T)+cx(t-2r))"-x(t-T)+λf(t,x(t),x(t-T),x(t-2T))=0.
本文通过变分原理和Z_2不变群指标,得出下述二阶中立型泛函微分方程(cx(t)+x(t-T)+cx(t-2T))"-x(t-T)+λf(t,x(t),x(t-T),x(t-2T))=0周期解个数的下界估计。
2.
In this paper,we obtained the theorem of uniform asymptotic stability for neutral functional differential equations with infinite delays (NFDE(D,f)).
对具无限时滞的中立型泛函微分方程,去掉F有界的条件,证得了其零解为一致渐近稳定的结果,进而将此结果推广到NFDE(D,f)关于部分变元稳定性的情形。
3.
By using the coincidence degree theory,the periodic solutions for a class of second order nonlinear neutral functional differential equations[x(t)+cx(t-τ)]″+f(t,x(t),x′(t))+g(t,x(t-γ(t)))=p(t) are investigated.
利用重合度理论,研究了一类二阶非线性中立型泛函微分方程[x(t)+cx(t-τ)]″+f(t,x(t),x′(t))+g(t,x(t-γ(t)))=p(t)的周期解的存在性,得到了周期解存在的充分条件。
补充资料:非线性偏微分方程


非线性偏微分方程
noil-linear partial differential equation

  非线性偏微分方程【咖J.翻r,而I山价拍函坛la甲.d阅;He翻e面.oeyP姗e皿ec,aC几。,nPO,3的月”曰M一」 一个形如 F(x,u,…,D“u)“0(1)的方程,其中x=(x.,…,x。)任R“,u=(“:,一,“。)〔R’,F=(F,,一,F*)‘R“,:=(:.,…,:。)是由非负整数:,,…,:。组成的一个多重指标,D’二D寸‘二D二·,D‘=a/刁x‘(泛=1,…,。).在复值函数的情形下,可类似地定义非线性偏微分方程.若k>1,通常称为向量的非线性偏微分方程或非线性偏微分方程组.方程中出现的最高阶导数的阶数称为(l)的阶. 最为熟知的一个非线性方程是M加犯e.All妙耽方程(M。刀罗一Am乒re叫Ua石on)}口2,J}石‘_、a Zu detl二竺竺一!十)A .fx,“,Du)下‘-于一一+ 一’}口‘.刁‘,}i,仁,‘一‘,、‘”一’一’口x;刁xj +B(x,u,Du)‘0;(2)此处及以下,Du二(D、u,二‘,D。u), 若k=阴且F关于最高阶数所对应的变量是可微的,方程(l)的类型由F关于这些导数的主要线性部分的类型所定义(见偏微分方程(山玉沈n往目闪叩-tion,paJ石al)).对于相应的变量的导数(或由微分运算所产生的导数),一般地,人们相应地赋予一个确定的权.例如,在非线性热传导方程中, 。。,「。。刁,ul 一二,-=1 IX,。X。U—.一.丁--布,l, 口x.一L一口xZ口x三」此处日f/日pZ:>o,尸2:拱口’u/刁x{,则导数刁f/ap之:有权为2. 因为(l)关于最高阶导数的线性化是在一个固定解的邻域内进行的,(l)的类型将可能依赖于这个解(对照线性方程,甚至在一固定点x处).例如,方程 单华+旦兰生一旦生一f(二二二,、(3、 日x{口x左刁x:在具日“/口x:>o的解。处为椭圆型的,而在具口u/刁x:<0的解“处则为双曲型的. 一个方程的类型决定了此方程的边值(混合)间题是否适定以及影响研究它们的方法. 若函数F线性地依赖于它的最高阶导数,则(1)称为拟线性方程(q班‘i一恤份r闪Uat10n).例如,(3)是拟线性的.否则,方程称为是本质非线性方程(邸cnt访lly non七lx分r叫m石on).例如,Mo卿一内np-吮方程(2)是本质非线性的. 若一个拟线性方程的最高阶导数的系数不依赖于解(或它的导数),则方程称为弱非线性方程(w戈月ynon刁11长以r叫Uation)、例如,方程 A“=f(x,“,D“)(4)是弱非线性的. 拟线性和弱非线性偏微分方程之间的区分是承担了一个有条件的特性而不反映方程的内在性质.弱非线性方程可能有较拟线性甚至本质非线性方程更强的非线性性质.例如,存在形如(4)的弱非线性方程,它的在一有界区域内的一个给定的D州ehlet问题有可数多个不同的解. 形如(1)的方程可在全空间R”内考虑,或者在它的某一子域内研究.在第一种情形下,解空间的定义含有在无穷远处解的性态的条件.而在区域的情形下,人们在边界上或其一部分上提一个或更多的边界条件.这些边界条件同样可含有非线性算子.一个非线性偏微分方程连同一个边界条件(或一些边界条件)一起形成一个非线性问题,此问题必须在一个适当的函数空间内讨论.这个解空间的选取由该区域内的非线性微分算子F及边界算子的结构所决定.一个非线性问题的解空间的选取对问题的讨论是一个本质的因素.例如,对如下非线性问题:在有界区域oc=R”内,,。落。(一‘)”,”‘(,”‘ul’一’sgn”“U)一f(x),p>‘, 在边界刁。上,D尹u:oO,1刀l蕊m一1,此问题对应于C以沁J记B空间W叹Q).对于其对偶空间评子“(。)二(评了(。))’,q一’千p一’=1中任一函数f,。此问题在心(川内有唯一的解·此处及以下,W誉(。)是所有在Q内无限次可微且有紧支集的函数所成的集合在。石叨eB空间W君(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条