说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 强连续余弦算子函数 1)  strongly continuous cosine operator function 强连续余弦算子函数 1. The paper discusses the irreducibility for strongly continuous cosine operator functions and its dual perturbed cosine operator functions, and obtains the following two results: 1) Suppose (X, ‖·‖ ) is a Banach lattice, {C(t)}t≥0 is a positive cosine operator function, B∈. 讨论了强连续余弦算子函数的不可约性及其共轭扰动余弦算子函数的不可约性,建立了以下两个结果:1)设(X,‖·‖)为Banach格,{C(t)}t≥0是正的强连续余弦算子函数,B∈B(X,XΘ)是一个正算子,那么,扰动余弦算子函数{CB(t)}t≥0是不可约的充要条件为:J={0}及J=x是仅有的满足C(t)J J,K(λ)J J的闭理想,这里t≥0,K(λ)=R(λ2,AΘ)B。 2)  bi-continuous cosine operator function 双连续余弦算子函数 1. This paper aims to introduce the concept of bi-continuous cosine operator functions on some special Banach spaces,investigate the properties of bi-continuous cosine operator functions and obtain the generation theorem. ‖)和局部凸拓扑(X,τ)的Banach空间上,同时引入了双连续余弦算子函数的概念,通过研究生成元及其预解式的性质,我们得到了双连续余弦算子函数的生成定理。 3)  cosine operator function 余弦算子函数 1. Kluwer,333～350) that the Cauchy problem(*) is well-posed,if and only if the closed operator occurring in(*),A,generates a strongly continuous Cosine operator function. 部分算子A|W(A,k)生成一个多项式有界的余弦算子函数{C(t)}t∈R+,使‖C(t)‖W(A,k)≤2(1+t)k;。 2. Let C(t), t∈R, be a strongly continuous cosine operator function on Banach space X, and A its generator. 　C(t),t∈R,是Banach空间X中的余弦算子函数,生成元是A,证明了:C(t)-I, t∈R,紧的充要条件是生成元A紧。 3. Let A be the generator of cosine operator function C(t),t∈R, and sine operator function S(t), t∈R, in Banach space X . A是 Banach空间 X中余弦算子函数 C(t) ,t∈ R,和正弦算子函数 S(t) ,t∈ R,的生成元 。 4)  Cosine operator funtions 算子余弦函数 5)  m-times integrated cosine functions m次积分余弦算子函数 1. m-times integrated cosine-function is a family of operators recently proposed,the approximation of m-times integrated cosine functions is one subject studied by many researchers. m次积分余弦算子函数是近年来提出并研究的一类算子族,它的逼近问题是研究的课题之一。 6)  Integrated cosine operator function 积分余弦算子函数 补充资料：反余弦函数 函数y=cosx(x∈[0,π])的反函数叫做反余弦函数，记作y=arccosx.符号arccosx(|x|≤1)表示属于[0,π]的唯一确定的一个角，这个角的余弦恰好等于x. 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com