1) Lupas-Baskakov operators
Lupas-Baskakov算子
1.
Pointwise approximation of Lupas-Baskakov operators;
关于Lupas-Baskakov算子的点态逼近估计
2) Lupas-Baskakov-Type operators
Lupas-Baskakov型算子
3) generalized Lupas-Baskakov operators
广义Lupas-Baskakov算子
1.
Asymptotic approximation of one order absolute moment for Generalized Lupas-Baskakov operators by means of analysis technique is obtained,and the rate of Convergence of generalized Lupas-Baskakov operators by means of Bojanic-Cheng methods combining with division technique of interval for functions with locally bounded derivative is studied.
得到了广义Lupas-Baskakov算子一阶绝对矩量的渐近估计式,并结合区间分割技术和Bojanic-Cheng方法研究了广义Lupas-Baskakov算子关于导函数为局部有界函数的点态逼近估计。
5) baskakov operators
Baskakov算子
1.
Using the moduli of smoothness w (?)λ 2 (f, t)w, direct and inverse approximation theorems with Jacobi weight of Baskakov operators is established; And the relation between derivatives of the operators and the smoothness of functions to be approximated is obtained.
本文利用加权光滑模ω_~2λ(f,t)ω给出了Baskakov算子加Jacobi权逼近的正逆定理;另外,研究了加权下Baskakov算子导数与所逼近函数光滑性之间的关系。
2.
In this paper we give the equivalence theorem on simultaneous approximation for combinations of Baskakov operators.
本文建立了Baskakov算子线性组合同时逼近的等价定
3.
By means of DitzianTotik moduli of rorder, the local and global characterization theorems for the derivatives of the Baskakov operators are investigated.
研究Baskakov算子导数的点态和整体定理,用Ditzian Totik光滑模刻画该算子导数的点态和整体定理。
6) Baskakov-Durrmeyer operator
Baskakov-Durrmeyer算子
1.
Simultaneous approximation by Baskakov-Durrmeyer operator;
Baskakov-Durrmeyer算子同时逼近
2.
In this paper, by using the method of Bojanic,we gave an estimate on the rate of convergence of the Baskakov-Durrmeyer operator for the function of bounded variation on [0,∞) and proved that the estimate is essentially the best possible.
利用Bojanic方法来估计Baskakov-Durrmeyer算子对在[0,∞)有界变差函数的收敛速度,并且收敛速率是不可改进的。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条