说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 面积积分函数
1)  area integral function
面积积分函数
2)  Lusin area integral function
Lusin面积积分函数
1.
Lusin area integral function on Lip α(R n)(0<α<1);
Lip_α(R~n)(0<α<1)上的经典Lusin面积积分函数
3)  area function
面积函数
1.
We assert two results:(1) for a function f on Lipschitz spacet Lipα(Rn), if the corresponding Littlewood-Paley g-function g(f)(x) or the area function S(f)(x) has finite value at a single point in Rn,then it is finite everywhere, and (2) the operator S on Lipα (Rn),is bounded in some sense for each α,0<α<1,likewise is the operator g if the value of λ is suitably chosen.
本文证明,对于Lipschitz空间Lipα(Rn)的函数f,若相应Littlewood-Paley的g函数的g(f)(x)(或面积函数S(f)(x))在Rn中一点有限,则它必处处有限,并且作为Lipα(Rn)上的算子,g和S在一定意义下有界,这对一切α,0<α<1,和适当的λ成立。
2.
The article emphasizes how to use fused quartz to calibrate the probe area function.
文章主要介绍了如何使用熔融石英去校准针尖的面积函数。
4)  function integral
函数积分
1.
First an proximate expression of Gauss type function integral is deduced with proper accuracy, and then a scheme based on modified radial basis function (RBF) neural networks is proposed.
导出了在一定精度下高斯型函数积分近似表达式,利用径向基函数(RBF)网络具有良好的逼近任意非线性映射的特点,提出了一种改进的RBF网络方法以实现对高斯型函数积分。
5)  integral function
积分函数
1.
Some properties of Reimann integral and integral functions are studied by means of the equivalent definition of Reimann integral.
用Riemann积分通常定义的等价定义 ,研究了Riemann积分的若干性质以及积分函数的性质。
2.
Suppose canonical representation of a positive integer n is: n = n=p_1~(α1)p_2~(α2)…p_r~(αr), the definition of Integral function I(n):Obviously I(n) is multiplicative.
设正整数n的标准分解式为:n=p_1~(α1)p_2~(α2)…p_r~(αr),则积分函数I(n)的定义如下:显然I(n)为可乘函数。
6)  Lusin-areafunction
Lusir-面积函数
补充资料:面积积分
      又称面积函数,是苏联数学家。Η.Η.卢津1930年首先引入的一种特殊积分。假设 ??(z)是单位圆|z|<1内的解析函数,??┡(z)是它的导数,那么积分 (1)称为??在点z=e处的面积积分(见),这里δ是小于1的某个正数,Ωδ(θ)是由点e引圆周Cδ(│z│=δ)的两条切线与Cδ上被两切点所截的、离e较远的圆弧所围的区域。
  
  积分(1)中的被积函数 是映射z→??(z)的雅可比行列式,当??(z)为一一映射时,可知(Sδ(??)(θ))2正好是区域Ωδ(θ)在映射??下的映像面积。面积积分的名字由此而来。
  
  Sδ(??)(θ)在某些点e处,可能是无限的。但是,卢津为了研究一类解析函数的性质,证明了当 ??(z)∈h2,即时,对于单位圆周上几乎所有的e,面积函数Sδ(??)(θ)都是有限的,并且, (2)式中??(e)是??的边值函数;当??(0)=0时,还成立下面的相反不等式, (3)式中Aδ是常数,决定于δ。
  
  后来,J.马钦凯维奇和A.赞格蒙把上述定理又推广到函数类hp(p>0),即满足条件的圆内解析函数全体。
  
  面积积分的重要性,还在于它本质上可以局部地刻画圆内解析函数?? 在边界z=e 处非切向极限的存在性。确切地说,除了一零测度集外,圆内解析函数?? 在边界z=e处具有非切向极限的充分必要条件是。这说明Sδ(??)(θ)与??的边界性质有着十分深刻的内在联系,因此它是表达圆内解析函数边界性质的一个重要工具。正是这一点,它在研究高维空间的hp理论时,发挥了非常重要的作用。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条