说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 无穷阶矩阵 1)  infinite-order linear equations 无穷阶矩阵 2)  infinite matrix 无穷矩阵 1. The boundedness of the set of infinite matrix transformations from convergence-free space to sequence spaces is studied,and a general form of it is deducted. 研究了从收敛自由空间到序列空间l1的无穷矩阵变换的有界集的特征,得到了从一般的收敛自由空间到序列空间l1的无穷矩阵变换的一般形式。 2. Let λ and μ be sequence space and have both the signed-weak gliding hump property,(λ,μ) be the algebra of the infinite matrix operators which transform λ to μ. λ、μ是具有符号弱滑脊性的序列空间,(λ,μ)是λ到μ的无穷矩阵代数。 3. This paper introduces the research development of the important effect algebra in quantum mechanics,and points out that it is of great significance to the establishment of mathematical foundation of quantum mechanics by making use of infinite matrix theory to study its convergent theory and invariants. 指出利用无穷矩阵理论研究其上的收敛理论和不变量,对建立量子力学的数学基础有重要意义。 3)  infinite lower-triangular matrices 无穷阶下三角矩阵 1. The main purpose of this paper is to study in full generality combinatorial inverse relations of arbitrary infinite lower-triangular matrices, namely, a pair of such matrices (F_(n,k)) and (G_(n,k)) thatGenerally speaking, our method relies on an expression in terms of determinants for each n-row and k-column entry G_(n,k) with the assumption that (F_(n,k)) is known. 本文主要研究无穷阶下三角矩阵的反演关系,即两个无穷阶下三角矩阵(F_(n,k))∈N和(G_(n,k))_((n,k)∈N)(N为自然数集)的互逆关系,也就是主要方法是通过给定矩阵(F_(n,k)),利用行列式和算法先计算逆矩阵(G_(n,k))的元素,再确定(猜想)它的一般解析式,最终通过归纳法和Riordan群方法给出它的数学证明,从而得到有用的反演关系。 4)  infinite matrix ring 无穷矩阵环 1. We discuss derivation on infinite matrix rings, and prove that every derivation ofinfinite matrix rings with a finite number of nonzcro entries on a ring R can be represented asthe sum of two special derivations. 讨论无穷矩阵环上的导子,证明了环R上有限个元素不为零的无穷矩阵坏的每个导子均可表示为两个特殊导子之和。 5)  infinitesimal transfer matrix 无穷小转移矩阵 6)  infinite matrix transformation 无穷矩阵变换 1. Using Antosik-Mikusinski basic matrix theorem? and the subset family, for a type of mapping matrix, a series of matrix transformation theorems is obtained, and the characterizations of a class of infinite matrix transformations is also derived. 利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵,获得了一系列矩阵变换定理,并且给出了一类无穷矩阵变换的刻划,补充和完善了非线性矩阵变换定理。 2. The decisive breakthrough in research of infinite matrix transformation is that the action of continuous linear operators in Banach Space on vector sequence, which was started at 1950 by A. 无穷矩阵变换研究上的决定性突破是1950年A。 3. From the Antosik-Mikusinski basic matrix theorem and the subset family,for a type of mapping matrix,an infinite matrix convergence theorem is obtained,and the stronger characterizations of a class of classical infinite matrix transformations were also derived. 利用Antosik-Mikusinski基本矩阵定理和该子集族,对于一类映射矩阵获得了一个无穷矩阵收敛定理,并且给出了一类经典无穷矩阵变换的更强刻划。 补充资料：无穷阶方程 无穷阶方程 equation of infinite order 无穷阶方程【闰娜位犯Of斌hate .d巴;6eeKo。。，。oro。，p:皿Ka ypa:。e。一e]，复域中的 形如 属、(z)夕加’(z)一f。)的微分方程，其中y(习是复变量:的未知函数，久(z)及f(z)是给定的函数.已被充分研究的无穷阶方程是具有常系数的方程: Ly二艺气少”，(z)可(z). n=0如果特征函数 尹以卜艺气厂 月=0是一个指数型口整函数，那么，当y(z)是在圆盘Iz一z。}的中解析的函数时，左边Ly对:=孔有意义.如果。二田，则必须假定y(z)是整函数.与有穷阶方程的差别在于即使f(:)是整函数，解y(z)也可以有奇点.如果。一O且f(习是整函数，则解的存在区域是凸的“ID.通解由一个特解和相应齐次方程的通解组成.设又1，人，…是特征方程职(劝=O的根，并设m，，爪2，…分别是它们的重数.齐次方程有初等特解砂砂·’(k二o，…，m。一l;n=l，2，·…齐次方程的解可写成根据确定的规则形成的初等特解的级数.如果特征函数职(幻有正常的增长(在某个确定意义下)，则可以找到这个级数部分和的子序列收敛到y(z)(【41).一般情况下，可以用初等解的有限线性组合近似函数y(z)到所需的精确度(【5]).如果。=0，则一个无穷阶方程可以有非解析解([2J).在某些条件下这些解构成一个拟解析类(q瑙始i-ar阎ytjc ch朋)，其中微商增长的界比经典众句oy一O川盯阻n定理中的弱. 无穷阶方程有多种应用.它们被用于D州d亚t多项式序列，解析函数系的完全性，解析和调和函数的唯一性等问题的研究，以及用于解析问题的可解性，例如广义拟解析性问题，动量的广义唯一性问题，等等. 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com