说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 丢番图方程解的上界
1)  the solutions to the diophantine equations
丢番图方程解的上界
2)  the upper bounds for the solutions to the diophantine equations
丢番图方程的解
3)  Diophantine equation
丢番图方程
1.
On the Diophantine equation x~p-1=Dy~n;
关于丢番图方程x~p-1=Dy~n
2.
On the solution of the Diophantine equations x~2-2p=y~n;
关于丢番图方程x~2-2p=y~n的解
3.
On the Diophantine equation(15n)~x+(112n)~y=(113n)~z;
关于丢番图方程(15n)~x+(112n)~y=(113n)~z
4)  diophantine equations
丢番图方程
1.
On the Diophantine equations x~4±y~6=z~2 and x~2+y~4=z~6;
关于丢番图方程x~4±y~6=z~2与x~2+y~4=z~6
2.
When p is a odd prime and p ≠1 (mod 8), we get all solutions of diophantine equations ( x(x+1)(2x+1)=2p~ky~(2n) ) with elementary theory of number.
若p为奇素数,且p≠1(mod8)时,本文给出了丢番图方程x(x+1)(2x+1)=2pky2n的所有正整数解,并给出了Lucas猜想的一个简单证明。
3.
With the help of the elementary theory of number and Fermat method of infinite descent,some necessary conditions have been proved provided that the Diophantine equations x 4+mx 2y 2+ny 4=z 2 has positive Integer solutions that fit (x,y) =1 m.
利用数论方法及Fermat无穷递降法 ,证明了丢番图方程x4 +mx2 y2 +ny4 =z2 在 (m ,n) =(± 6,-3 ) ,(6,3 ) ,(± 3 ,3 ) ,(-12 ,2 4) ,(± 12 ,-2 4) ,(± 6,15 ) ,(-6,-15 ) ,(3 ,6)仅有平凡整数解 ,并且获得了方程在 (-6,3 ) ,(12 ,2 4) ,(3 ,-6) ,(-6,3 3 )时的无穷多组正整数解的通解公式 ,从而完善了Aubry等人的结
5)  diophantus equation
丢番图方程
1.
Let p>3 be a prime integer prime,when the elementary grade method and the Diophantus Equation theories are used.
设p>3为素数,证明了丢番图方程x6-y6=2pz2无正整数解,证明了丢番图方程x6+y6=2pz2在p 1(mod24)时无正整数解,同时获得了方程在p≡1(mod24)时有正整数解的计算公式。
2.
In this paper two theorems are given by using matrixvector description of polynomial multiplication, which are useful to resolve the Diophantus equation.
采用多项式乘积的矩阵-向量表示方法,证明了对求解丢番图方程极为有用的定理1和定理2,从丢番图方程的基本解法着手,给出了各种设计要求下的极点配置算法。
6)  diophantion equation
丢番图方程
补充资料:丢番图逼近
      数论的一个分支,以研究数的有理逼近问题为主。这里所谓的数是指实数、复数、代数数或超越数。数的有理逼近问题,可表为求某种不等式的整数解问题。由于在整数范围求解的方程称为不定方程或丢番图方程,因而把求不等式的整数解问题称之为丢番图逼近。
  
  1842年,P.G.L.狄利克雷首先证明了实数有理逼近的一个结果:如果α是任意实数,Q是大于1的实数,那么存在整数对p、q,满足两个不等式:1≤q≤Q和|αq-p|≤Q-1。由此可得,如果α是任意无理数,那么存在无穷多对互素的整数对p、q,满足不等式|α-p/q|-2。当α是有理数时,上式不成立
  。
  
  1891年,A.胡尔维茨将上式改进为并指出,对于某些无理数,常数是最佳值,不可再减小。但是对于很多无理数,常数不是最佳值,还可再减小。1926年,A.Я.辛钦证明了:在勒贝格测度意义下对几乎所有的实数α,不等式|α-p/q|<ψ(q)/q的整数解p、q有无穷多对还是只有有穷多对,由级数是发散的还是收敛的而定,这里 ψ(q)(q>0)是正的非增函数。此即所谓丢番图逼近测度定理。例如,对几乎所有的实数 α和任意的δ>0,不等式|α-p/q|只有有穷多对整数解,而不等式|α-p/q|-2(ln q)-1有无穷多对整数解。
  
  丢番图逼近与连分数有密切联系。一个数的连分数展开,往往就是具体构造有理逼近解的过程。例如,对于任意无理数α,有无穷多个渐近分数pn/qn,满足不等式
  
  1844年,J.刘维尔开创了实代数数的有理逼近的研究,他证明了:如果α是次数为d的实代数数,那么存在一个常数C(α)>0,对于每个不等于α的有理数p/q,有|α-p/q|>C(α)/qd。亦即如果μ>d,那么不等式|α-p/q|-μ只有有穷多个解p/q。根据这一结果,刘维尔构造出了历史上的第一个超越数。以后一些数学家不断改进指数μ 的值,直到得出μ 与 d无关的结果。1909年,A.图埃得到μ >1+d/2。1921年,C.L.西格尔得到。1947年至1948年间,F.戴森和A.O.盖尔丰德各自独立证明了。1955年,K.F.罗特得到了μ与d无关的一个结论:如果α是实代数数,其次数 d≥2,那么对于任意的δ>0,不等式只有有穷多个解。这一结论又称为图埃-西格尔-罗特定理。
  
  对于一组数的有理逼近问题,称之为联立丢番图逼近。狄利克雷关于联立逼近有如下论断:如果α1,...,αn是n个实数,Q>1是整数,那么存在一组整数q,p1,...,pn满足不等式组
  
   进而,如果α1,...,αn中至少有一个无理数,那么存在无穷多组解(p1/q,...,pn/q),适合不等式组
  
  
  关于实代数数的联立有理逼近,直到1970年才由W.M.施密特彻底解决。他证明了:如果α1,...,αn是实代数数,并且1,α1,...,αn在有理数域上线性无关,那么对任意的δ>0,只有有限多个正整数q使得成立。式中记号‖x‖表示x与最近整数的距离。这一结果的一个等价表达方式:对于上述的实数α1,...,αn及任意的δ>0,只有有限多组非零整数q1,...,qn适合
  。由此可知,联立不等式
  只有有限多组解(p1/q,...,pn/q),以及不等式
  只有有限多组整数解p,q1,...,qn
  
  用代数数逼近代数数,也是丢番图逼近的一类重要内容。W.M.施密特所著《丢番图逼近》(1980)一书中,有详细的论述。
  
  自20世纪以来,丢番图逼近除自身的发展外,在超越数论、丢番图方程等方面都有重要的应用。
  
  

参考书目
   J. W. S.Cassels,An Introduction to Diophantine ApproxiMation, Cambridge Univ. Press, Cambridge, 1957.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条