说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 算子连续
1)  operator continuity
算子连续
2)  continuous operator
连续算子
1.
The numerical methods for continuous operator approximation in Rn have attracted the attention of a great many researchers from the fields of theory and application.
Rn中连续算子的逼近问题的数值方法,一直是计算科学中研究的热点。
3)  compact continuous operator
紧连续算子
1.
This paper aims at compact continuous operators.
在Menger概率线性赋范空间中以紧连续算子为研究对象,利用概率线性赋范空间中的Leray-Schauder拓扑度理论,通过改变紧连续算子所满足的边界条件,研究了由该紧连续算子所决定的一类非线性算子方程Tx=μx(μ≥1)(其中T为紧连续算子)解的存在性问题,得到几个新的定理。
2.
A series of sufficient conditions for which the compact continuous operator T has an intrinsic value λ and has an intrinsic element corresponding with λ on W are established.
在Menger概率线性赋范空间中,利用该空间中的Leray-Schauder拓扑度理论,研究非线性算子T,建立了紧连续算子T有固有值γ和W上存在对应于γ的固有元的一系列充分条件。
4)  Weakly continuous operators
弱连续算子
5)  completely continuous operator
全连续算子
1.
For the 2nth order differential equation u~((2n))+G(u)=M(u),under the condition of M being a bounded completely continuous operator,the existence of periodic solution is discussed by virtue of homeomorphism,and fixed point method.
考虑微分方程u(2n)+G(u)=M(u)解的存在性问题,运用同胚理论及不动点方法给出在M为有界全连续算子条件下此类方程解的存在性定理。
2.
In this paper, we get a new theorem of the ambiguous points and a new theorem of the asymptotic ambiguous points on the completely continuous operators and the cone maps, and we point out some global characteristics of their eigenvalues.
本文得到全连续算子和锥映象的新的歧点和渐近歧点定理,并指出它们的固有值的某种全局特征。
3.
This paper studies some global characteristics of eigenvalue and eigenelement on the completely continuous operator under the only ‖Ax‖‖x‖→+∞(‖x‖→+∞) and the ‖Ax‖‖x‖→+∞(‖x‖→0), respectively.
仅分别在‖Ax‖‖x‖→+∞(‖x‖→+∞)和‖Ax‖‖x‖→+∞(‖x‖→0)之下,研究全连续算子的固有值、固有元的某种全局特征,并应用到Hammerstein算子的研究上,得到了新的结果。
6)  Lipschitz operators
Lipschitz连续算子
补充资料:连续方法(对非线性算子的)


连续方法(对非线性算子的)
ontinuation method (for nonlinear operators)

连续方法(对非线性算子的)【“.‘..d.meth目(肋咖di理ar.不比.加峪);呵扣理切洲旧..加.毕以盯脚~l,亦称等攀琴拓烤,时参数化族的 近似求解非线性泛函方程的一种方法.这种方法在于通过引进一个取值在一有限区间t。城t(t’的参数t把要求解的方程尸(x)=O拓广成形为F(x,O“O的方程,使得当t=扩时得到原来的方程:F(x,t’)=p(x),同时方程F(x,t0)“0或者能容易地求解,或者早已知道该方程的一个解x0(见【l]一王3]). 拓广了的方程F(x,O二0是对个别的t值:t。,…,t‘二t’逐次求解的.对t二t‘十:的方程的求解是通过某种迭代法(Newton法,简单迭代,参数变值法,[4],等等)从由解t=t‘的方程F(x,t)=0得到的解x‘开始来实现的.在关于泛的每一步应用,例如,n次Newton迭代,就分致公式 ·}、、、一,){,、、(一,、J、}.t{夕 Z一(),一k}L一。·一了‘一l;、吃咬夕!、{】’如果差抓,一rl充分小,则为保证得到r=亡卜,时的解戈十、、x,的值可能是一卜足够好的保证收敛性的初始近似(见!l」,{31,!5」)‘ 在实践中,原来的问题常常自然地依赖于某个参数,该参数就可取作t. 连续方法用于求解非线性代数方程组和超越方程(见【11,!2〕),L卜走及更一般的Banach空间中的非线性泛函方程(见【5卜{7j) 连续方法有时称为参数变值直接法(见【2],16]),也称为直接和迭代参数变值组合法.在这些方法中,通过对参数的微商把构造拓广的方程的解的问题化为求解一个带初值的微分方程问题(Cauchy间题),用常微分方程的数值积分法来解这个问题.在参数变值直接法中把最简单的Euler方法用于该Cauchy问题 么「,、11。,‘、_ 兰之=一1矛_‘万.1、IF‘x.门.钊I‘、、=文、 dIL‘、”」F(x,t卜O的解州t)的近似值x认)=x,(i二1,…,火)可通过下面的恒等式来决定: ·,、一吸I、一,!F可(/,,/,){’F;(X,!,· :二O…,k一lx、就是要求的原来方程p(x)=0的近似解.所有的值或某些值x‘+,的改进可以通过参数变值迭代法(I4」)(或Newton法)来得到 拓广方程通常以下述形式 厂(x,t,、l)=(l一又)F(x(o).2‘、,),x(。)=、,、;在一有限区间0簇只簇l上生成,或在其中用e一,来代替1一又,从而在无穷区间O簇T共刃_匕生成 参数变值法一直用于一大类问题,既用来构造解又用来证明解的存在性(例如,见!3],!41,[6].【7]).[补注]见连续方法(continuatlon method)的补注.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条