说明：双击或选中下面任意单词，将显示该词的音标、读音、翻译等；选中中文或多个词，将显示翻译。 您的位置：首页 -> 词典 -> 有限族新隐迭代序列 1)  implicit iterative sequence of a finite family 有限族新隐迭代序列 2)  implicit iteration process 隐迭代序列 1. The necessary and sufficient condition of strong convergence of the implicit iteration process for a finite family of nonexpansive mappings is proved. 在一致凸Banach空间中,提出了一类新的两步隐迭代序列,证明了此序列收敛到有限族渐近非扩张映象的公共不动点的充要条件。 3)  implicit iterative sequence 隐式迭代序列 1. Under weaker restrictive condition for the parameter,this paper presents the study of the weak convergence and strong convergence of the implicit iterative sequence with errors for a finite family of nonexpansive mappings with common fixed points in Hilbert space by using Hilbert space identity and Opial s property for the Hilbert spaces. 在对参数较弱的限制条件下,本文利用Hilbert空间恒等式及Opial性质,在Hilbert空间上对有限个具有公共不动点的非扩张映象,研究了具误差的隐式迭代序列的弱收敛性和强收敛性。 2. This paper introduces implicit iterative sequence possessed errors for a finite family of nonexpansive mappings with common fixed points and proves that, under different conditions, the implicit iterative sequence with errors converges weakly and converges strongly to a common fixed point respectively. 对有限个具有公共不动点的非扩张映象引入具误差的隐式迭代序列,并在不同条件下证明了具误差的隐式迭代序列分别弱收敛,和强收敛于这有限个非扩张映象的某一公共不动点。 4)  composite implicit iterative process 合成隐迭代序列 5)  iterative sequence 迭代序列 1. Strong convergence of Reich-Takahashi iterative sequence for asymptotically pseudo-contractive mapping; 渐近伪压缩映像的Reich-Takahashi迭代序列的强收敛性 2. Strong convergence of some iterative sequences for asymptotically nonexpansive mappings in Banach spances; Banach空间中渐近非扩张映象迭代序列的强收敛性 3. Aim\ The convergence of Mann iterative sequences of real functions defined on unbounded convex domain is discussed. 目的　讨论无界闭凸区域上的实函数的 Mann迭代序列的收敛性 。 6)  iteration sequence 迭代序列 1. For a lot of nonlinear mappings,the fixed points can be approximated by iteration sequence {xn}. 设E是Hilbert空间,T是E中具非空不动点集F(T)的非线性映象,许多非线性映像的多种形式的迭代序列{xn}可逼近映像T的不动点p0∈F(T)。 2. Convergence of Ishikawa iteration sequence for setvalued nonexpansive mapping are discussed in uniformly covex Banach space, and the conditions are shown which guarantee the convergence of the iteration sequence to a fixed point. 讨论了集值非扩张映象在一致凸Banach空间中Ishikawa迭代序列的收敛性及确保迭代程序收敛到不动点的条件,所得结果是曾六川等的推广和发展。 3. This article will set up an iteration sequence and extent its results to a more comprehensive mapping-semi-compact 1-set mapping. 本文建立了一迭代序列,将其结果推广到更广泛的一类映射———半紧1-集映射,并削弱了紧性和全连续的条件,得到了乘积空间中的极小、极大耦合不动点定理。 补充资料：N点有限长序列的离散傅里叶变换     　　时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示，定义为　　　　(1)　　式中K＝0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出　　　　　(2)　　式中n＝0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。　　　　由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列，所以对N点序列进行时域和频域之间的变换是常用的变换，另外 DFT有它的快速算法，使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。　　　　DFT的原理 　是以给定的时域N点序列χ(n)作为主值周期进行周期延拓（即使之周期化）得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期，即得X(k)。同理，与此相似，如果已知X(k)求χ(n),则是从X(k)得X((k))N，再从X((k))N得χ((n))N，取出主值周期即得χ(n)。这个概念很重要，DFT的性质大都与此有关。至于从χ(n)求X(k)，或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的，并不需要通过χ((n))N和X((k))N。　　　　DFT的主要性质 　共有5点，如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列，χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N，X((l))N，Y((k-l))N及y((n-m))N等可类推其含义，不一一列出。　　　　　　DFT的快速算法 　又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂（即N＝2,&λ为整数）时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。　　 说明：补充资料仅用于学习参考，请勿用于其它任何用途。 参考词条 ©2011 dictall.com