说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 界面粘结性能
1)  interface bond properties
界面粘结性能
1.
A summarize of the status in quo of the research on the interface bond properties between FRP and wood is made in this paper.
本文通过介绍国内外FRP与木材的界面性能的研究现状,分析了FRP与木材的界面粘结性能研究中的相关问题,同时对其今后的研究进行了展望。
2)  intcrfacial adhcsivity
界面粘结性
1.
By capillary rhco meter, the rhcological properties of glass fiber reinforced HDPE composite melt, the relations of the rhcological properties with intcrfacial adhcsivity and glass fiber concentration etc.
采用毛细管式流变仪研究了不同温度条件下玻璃纤维(以下简称玻纤)增强HDPE复合材料熔体的流变性能,及其与材料界面粘结性、玻纤含量等的关系。
3)  bonding behavior of interfacial adhesive
界面剂的粘结性能
4)  Interfacial adhesion
界面粘结
1.
The interfacial adhesion of unsized and sized carbon fiber with different sizing agents and matrix can be characterized by single fiber fragment test.
本文通过单纤维碎裂法 ,分别对未上浆及不同上浆剂处理的碳纤维与基体的界面粘结性进行表征。
2.
The fatigue behaviour of continuous glass fibre mat reinforced polypropylene composites (GMT PPs) with different interfacial adhesion is investigated by dynamic fatigue tests.
采用动态疲劳试验研究了不同界面粘结状况的 GMT- PP复合材料的疲劳行为。
3.
The improvement in the interfacial adhesion , mechanical properties and mechanism of interaction between the various component have been discussed.
综述官能团化聚烯烃(FPO)在无机填料填充、增强、增韧,纤维增强、填充和阻燃等类型聚丙烯复合材料中的应用,并讨论了FPO改善复合材料界面粘结和提高力学性能的作用机理。
5)  interface adhesion
界面粘结
1.
The effect of anod treatment on theinterface adhesion between carbon fibers with DMF cement has been investigated in this work.
实验结果表明,碳纤维的阳极氧化表面处理是有效改善碳纤维/MDF水泥界面粘结性的方法,不经处理的碳纤维增强MDF水泥复合材料的性能比基体低,阳极氧化表面处理改善了碳纤维/MDF水泥界面的粘结性,使复合材料的性能提高。
6)  interfacial bond
界面粘结
1.
Research and development of interfacial bond property between synthetic fiber and concrete;
合成纤维与混凝土界面粘结性能研究与发展
2.
Based on the investigation results,the structure model of the interfacial bond layer in polymer.
在此基础上,对聚合物水泥基复合材料界面粘结层的结构模型进行了描述。
补充资料:复合材料界面粘结


复合材料界面粘结
interfacial bonding of composite materials

  复合材料界面粘结interfaeial bondi眼of com-posite materials表征复合材料中增强体与基体的结合状态。从理论上来看这种行为应首先发生浸润过程,因为不论是固体或是液体,表面分子处在力场不平衡状态,因此有较大的表面自由能,意味着它有吸附气体、液体的能力以降低其表面自由能。 吸附作用材料表面的吸附作用可分为物理吸附和化学吸附两种形式。物理吸附是两相间由范德瓦耳斯作用力、偶极相互作用力和氢键作用力等所构成的吸引力。这些作用力要依据体系情况来决定是否存在,但是范德瓦耳斯力则在任何情况下都是存在的。化学吸附是两相在彼此吸附的过程中产生电子转移,即形成化学键。这种化学键是稳定的,不易发生变化。化学键的键能比物理吸附中最高的氢键键能还要高一个数量级以上。但在复合材料界面粘结力中物理吸附作用仍然是不可忽视的,或者是主要的成分,因为尽管化学键能很高,但是化学活性区在界面上所占的比例比物理作用区要小得多。所以浸润在复合材料成型过程中是极为重要的,其次才考虑化学活性问题。 机械粘结在某些情况下也是很重要的,特别对于表面粗糙并有沟槽的增强体(如碳纤维),如同在正压力下把基体压入沟槽,最终形成机械的“抛锚效应”,其界面粘结力也是很强的。 实际上复合材料的界面粘结力比理想的界面粘结力差很多,据估计仅占1/8左右。这是因为物体表面的粗糙度使分子接触面积大大减少,从而损失了3/4的界面粘结力,另外的1/8部分是由于存在残余应力导致的界面脱粘损失。 界面粘结力测定由于界面粘结的实际值对复合材料优化设计和评价有关键的作用,因此测定界面粘结力显得突出重要。主要的测定方法有单丝拔出法、单丝复合片材断裂长度法、复合材料片单丝压出法(微压头法)、中型压头压痕法、常规三点弯剪测试法等(见图)。前两种方法均以单丝为研究对象,与真实的复合材料有差距。其中单丝拔出法又有树脂杯和树脂珠拔出法。它们都是测量一根单丝由给定长度的树脂中拔出的力值来计算界面粘结力。但杯法制样品困难,而且难以估计由于树脂表面上有弯月面带来埋入树脂长度的误差,而珠法则比较简单可靠。单丝复合片材在拉伸中,埋入的单丝会裂成多段,测其断裂长度的平均值即Lc值,由Lc二之.通 z2即可求得表示粘结力值的剪切强度抓式中。为单丝拉伸强度,df为单丝直径)。后3种方法以复合材料试件为对象。单丝压出法需要特制的设备和精细的压头,虽然对同一体系有较好的可比较性,但绝对值仍存在问题。中型压头压痕法也有值得推敲之处。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条