说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 级联非线性过程
1)  cascading nonlinear process
级联非线性过程
2)  cascaded nonlinear
级联非线性
3)  nonlinear process
非线性过程
1.
On-line nonlinear process monitoring based on sparse kernel principal component analysis;
基于稀疏核主元分析的在线非线性过程监控
2.
Through the simulation of a nonlinear process——pH controlling process, we can see the good stability and dynamic response of the algorithm.
通过对一个控制 p H值的非线性过程的仿真研究 ,表明该算法具有良好的稳定性和动态响应特
3.
Based on kernel ICA (KICA) model,the main contributions are as follows: firstly,a method to sort the rows of demixing matrix was introduced and the number of independent components was determined; secondly,the monitoring indices were extended into high-dimensional space by "kernel trick",and so a nonlinear process monitoring method was proposed.
在利用核ICA(KICA)建立过程非线性模型的基础上,根据核技巧,给出了一种高维空间分离矩阵的排序和独立元个数的选择方法,并将监控指标扩展到高维空间,从而提出一种基于KICA的非线性过程监控方法,解决了ICA对非线性过程监控效果不理想的缺点。
4)  non-linear process
非线性过程
5)  nonlinear processes
非线性过程
1.
Experimental studies of the characteristics of hot electron and nonlinear processes produced from different targets materials;
不同靶材超热电子和非线性过程特性的实验研究
2.
DKPLS based fault detection for nonlinear processes
基于DKPLS的非线性过程故障检测
6)  cascading nonlinear system
级联非线性系统
1.
Based on the phenomenological theory of semiconductors and two-level model, according to the principle of cascading nonlinear system and analysis on the Lyaponov exponents of its dynamics equations,the chaos disturbance mechanisms of extrinsic photoconductors under chaotic laser irradiation are studied.
在唯象理论和二能级模型下 ,根据级联非线性系统原理 ,通过求解载流子输运动力学方程的L yapunov指数 ,对混沌激光辐照下非本征光电导的混沌干扰机制进行了研究。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条