说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 压阻掺杂浓度
1)  impurity concentration of piezoresistor
压阻掺杂浓度
1.
Effect of impurity concentration of piezoresistor on dynamic shock response performance of high g_n accelerometer;
压阻掺杂浓度对高g_n加速度计动态性能影响
2)  doping concentration
掺杂浓度
1.
Measurement of doping concentration in strained Si_(1-x) Ge_x with four-probe array;
四探针法测量应变Si_(1-x)Ge_x掺杂浓度
2.
The electroluminescence spectra of devices with different doping concentration are detected under different driving current densities.
分别以PtOEP掺杂和未掺杂的Alq3膜作为发光层制作有机发光器件(OLED),改变掺杂浓度,检测器件电致发光(EL)光谱的变化。
3.
Based on rate equations,changing doping concentration and cladding size of the Er3+/Yb3+ co-doped double-cladding fiber laser,the effect of the doping concentration and cladding sizeon the performance of the Er3+/Yb3+ co-doped double-cladding fiber laser was studied.
为了研究掺杂浓度、包层尺寸对双包层Er3+/Yb3+共掺光纤激光器的影响,根据双包层Er3+/Yb3+共掺光纤激光器产生激光的机理,基于速率方程,采用改变Er3+,Yb3+掺杂浓度、内包层尺寸等光纤参数的方法,得到了双包层Er3+/Yb3+共掺光纤激光器随光纤参数变化的特征结果。
3)  Doped concentration
掺杂浓度
1.
53 μm photoluminescence intensity,doped concentration,and pump power were numerically simulated for Yb-Er co-doped .
考虑两级合作上转换、激发态吸收和交叉弛豫等非线性效应,建立了镱铒共掺氧化铝材料体系的八个能级的速率方程,唯象地构造了合作上转换、激发态吸收、交叉弛豫等系数随镱铒掺杂浓度的变化函数,数值模拟了Yb∶Er∶Al2O3材料1。
2.
By taking account of the loss of cavity as a function of the Nd 3+ doped concentration, a new expressions of the laser output power and the slope efficiency as a function of the doped concentration are obtained, which are coincident with the experimental results quite well.
通过对 Nd:YVO4晶体吸收特性的研究 ,对全固态 Nd:YVO4激光器中晶体的 Nd3 + 掺杂浓度在强光抽运条件下对激光输出特性的影响进行了分析 ,得出了激光器的输出功率和斜效率与晶体掺杂浓度的对应关系。
3.
% doped concentration,and a output coupler with radius of 30mm,were chosen in this experiment,and 456nm laser threshold was realized at 0.
实验中采用标称输出功率为3W的LD,端面抽运掺杂浓度为0。
4)  doping density
掺杂浓度
1.
By using MATLAB software, the authors carry out simulation computation and optimization; and study in a deep-going way the effect of the change of doping density and external bias voltage on frequency and amplitude of self-sustained oscillation of doped GaAs/AlAs superlattice with weak coupling.
运用MATLAB软件进行模拟计算和优化,深入研究掺杂浓度和外加偏压的变化,对GaAs/AlAs掺杂弱耦合超晶格自维持振荡频率和振幅的影响。
2.
The research results indicate that with the increase of doping density in channel,the hot carrier effect immunity becomes better.
基于流体动力学能量输运模型 ,利用二维仿真软件 Medici研究了深亚微米槽栅 PMOS器件衬底和沟道掺杂浓度对器件抗热载流子特性的影响 ,并从器件内部物理机理上对研究结果进行了解释。
3.
The method to deal with doping density for t he simulation of semiconductor devices was discussed.
讨论了半导体器件模拟计算中的掺杂浓度处理方法,比较了Fortran与Matlab两种计算,指出利用Matlab可以避免复杂繁琐的编程,而且调整极为方便。
5)  dopant concentration
掺杂浓度
1.
Influence of dopant concentration on properties of Al-F co-doped ZnO thin films;
掺杂浓度对Al-F共掺杂ZnO透明导电薄膜性能的影响
2.
The effect of oxygen content of the Nd-Fe-B permanent magnets doping Dy2O3 on the magnetic properties,the relation between the oxygen content of the magnets and the dopant concentration and ball abradant time have been studied by Mossbauer effect and magnetic measurement.
用穆斯堡尔效应和磁性测量等方法,研究了掺杂Dy_2O_3Nd-Fe-B磁体的氧含量对磁性能的影响以及氧含量与掺杂浓度和制粉球磨时间的关系,结果表明,掺杂Dy_2O_3可以有效地提高磁体的矫顽力,但其剩磁和最大磁能积会不同程度地降低,磁体中的氧含量由掺杂浓度和制备工艺所决定,并满足一定关系式。
3.
8-hydroxyquinoline aluminum(Alq3)was used as a host material, while tetraphenylporphyrin (TPP) as the dopant material, we constructed five electroluminescent (EL) devices with different dopant concentration, and studied the influence that the dopant concentration imposed on the EL devices’ electroluminescence spectra, color, max-brightness and max-efficiency.
以8-羟基喹啉铝(Alq3)为主体发光材料,四苯基卟啉(TPP)为掺杂染料,制备了5种不同摩尔掺杂浓度(0。
6)  high-doping concentration
高浓度掺杂
补充资料:半导体的压阻效应
      指应力作用下半导体电阻率的变化。在一些半导体中有相当大的压阻效应,这与半导体的电子能带结构有关。
  
  压阻效应是各向异性的,要用压阻张量π(四阶张量)来描述,它与电阻率变量张量δ ρ(二价张量)和应力张量k(二阶张量)有如下关系:π:k。由于对称二阶张量只有六个独立分量, 故亦可表达成这样,压阻张量可用6×6个的分量来表达。根据晶体对称性,像锗、硅及绝大多数其他立方晶系的半导体,压阻张量只有三个不等于零的分量,即π11、π12和π44
  
  测量压阻效应,通常有两类简单加应力的方法:①流体静压强效应。这时不改变晶体对称性,并可加很大的压强。锗、硅的电阻率都随压强增大而变大。②切应力效应。利用单轴拉伸或压缩,这时会改变晶体对称性。压阻系数Δ ρ/ ρk,与外力方向、电流方向及晶体结构有关。对锗、硅,压阻系数如下表所示:
  
  20世纪50年代起,压阻效应测量曾作为研究半导体能带结构和电子散射过程的一种实验手段,对阐明锗、硅等主要半导体的能带结构起过作用。锗和硅的导带底位置不同,故其压阻张量的分量大小情况也不同。N型锗的π44比π11、π12大得多,而N型硅的π11却比π12、π44大。这表明锗导带底在<111>方向上,硅导带底在<100>方向上。对于P型半导体,也有过一些工作。利用压阻测量和别的实验(例如回旋共振等),取得一系列结果,对锗、硅等的能带结构的认识具体化了。
  
  现在,半导体的压阻效应已经应用到工程技术中,采用集成电路工艺制造的硅压阻元件(或称压敏元件),可把力信号转化为电信号,其体积小、精度高、反应快、便于传输。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条