说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 倒角变换
1)  chamfer distance transformation
倒角变换
2)  cepstrum
倒谱变换
1.
A New Digital Watermarking Algorithm Based on Incepstrum;
一种倒谱变换的数字水印
2.
A new digital watermarking algorithm in Cepstrum domain;
一种基于二维倒谱变换的数字水印
3.
Then discusses the transform domain algorithm in five aspects: discrete cosine transforms(DCT),discrete fourier transform(DFT),discrete wavelet transform(DWT),fractal transform and cepstrum domain transform.
本文首先将数字水印算法从实现的角度分为空间域算法和变换域算法两大类,然后对变换域的算法从离散余弦变换(DCT)、离散傅立叶变换(DFT)、小波变换、分形变换及倒谱变换等方面检索了相关文献,对各种算法进行了尝试性分析和探讨。
3)  Reciprocal transformation
倒数变换
4)  cepstrum transform
倒谱变换
1.
An Audio Watermarking Algorithm Based on Wavelet and Cepstrum Transform
基于小波变换和倒谱变换的音频水印技术
2.
The blind audio watermarking algorithm based on cepstrum transform.
基于倒谱变换的音频盲水印算法。
5)  complex cepstrum transform
复倒谱变换
1.
Then complex cepstrum transform are implemented for all appointed sections.
该算法将音频信号分为包含相同采样点的若干段,计算指定段信号的均值,对均值小于0的段的信号取反,对均值大于等于0的段保持不变,然后对所有指定段进行复倒谱变换,将这些段的复倒谱变换系数均值与设定的阈值作比较,结合水印序列的值,通过增加、减少或不改变复倒谱系数的均值来嵌入水印。
6)  transformation by reciprocal half plane
倒半面变换
补充资料:电磁场的保角变换
      数学上规定复平面z和复平面ω之间的变换ω=f(z)是导数f′(z)厵0的各点处是保角变换,它是求解二维电磁场问题的一种有力工具。例如两个平行的柱形电极,当长度远大于间距、从而可以忽略柱体的末端效应时,就可近似为二维问题。保角变换可应用于:静电、静磁问题,包括传输线(即横电磁场)问题;具有复杂边界的导波系统问题;以及电磁场的反演问题。
  
  静电、静磁问题的应用甚广,在电源或磁源以外的区域,二维问题的电场强度或磁场强度等于某一静势函数的梯度,后者满足二维拉普拉斯方程,其解称为(圆)调和函数,记为u(x,y),则
  
  设复变数z=x+jy,则根据已知的u(x,y),总可以找到另一个调和函数v=v(x,y),构成解析函数
  ω(z)=u+jv
  z=x+jy
  称u和v为共轭函数,ω为复势函数。可以证明v也满足二维拉普拉斯方程并且在 z复平面上的等值线是两簇互相正交的曲线。若选其中的一簇为等势线,则另一簇就代表力线(电力线、磁力线),相应地称这两簇曲线所对应的函数为势函数和流函数(通量函数)。
  
  
  若能找到两个共轭函数,其中一个函数的等值线恰好和所研究的电极边界重合,则另一个函数的等值线即代表由电极发出的电力线。因而,根据电力线的流函数就可以计算出电极表面所带的电荷量,从而可以计算场分布和电容量等。例如平板电容器二维边缘场的分析(图1a)。设两极板的电位分别为±1伏,间距为2(长度单位),置于z-平面中(z=x+jy),根据对称性,只需分析上半平面(y>0)的场。利用解析函数
  
  的保角变换(t=ξ+jη),使z-平面上由点l、m、n连成的多角形变换成以点l′、m′、n′连线为界的上半t-平面(图1b)。已知后者的复势函数为
  
  故平板电容器的复势函数满足关系式
  
  据此可得出在z-平面内的等势线(u=常数)和电力线(v=常数)的曲线方程。
  
  某些边界形状较复杂的导波系统,经保角变换可变换成一个较易处理的简单边界形状。例如利用 H波导的电磁场解描述沟槽形波导(图2)的电磁场时就需要用保角变换。
  
  
  在电磁场反演问题中,由已知远区场推算电磁场源的距离、方向和形状时,可采用保角变换,将已知二维闭合曲线的外域变换成单位圆的外域,并利用变换函数以及远区场两者的劳伦茨级数展开式的系数关系,可以得出解的低频估计。
  
  在具体问题中,根据预给的势函数或流函数,去寻找合适的共轭函数并不容易。对于场域具有多角形边界的问题,施瓦茨变换是一种很有用的方法。它把一个复平面上由实轴和无限大的圆弧所围成的上半平面变换到另一复平面上的多角形内域,或反之。对于除了平角和零角之外只含一、二个正角的多角形,施瓦茨变换是初等解析函数;当正角增加到三、四个,变换与椭圆积分及椭圆函数有关。椭圆函数属于双周期解析函数,常应用于分析带状线等特种截面传输线。
  
  

参考书目
   林为干:《微波理论与技术》,科学出版社,北京,1979。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条