说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 时域多分辨分析方法
1)  multi-resolution time domain (MRTD)
时域多分辨分析方法
2)  MRTD method
多分辨时域方法
3)  MRTD
时域多分辨分析法
1.
It was developed that Multi-Resolution Time-Domain(MRTD) method with UPMLwas applied to photon scanning tunneling microscopy(PSTM).
本文采用时域多分辨分析法(MRTD),并利用FDTD方法的完全匹配层(UPML)作为边界条件,对Eckert等人在实验中所使用的喷溅金属铝小块样品作了数值模拟分析,给出了在PSTM模型中喷溅金属铝小块样品的数值模拟的三维图像,并对试验结果和理论结果进行了比较和分析,验证了Eckert等人的实验。
4)  mutliresolution time domain
时域多分辨分析算法
1.
A new method which combines the Alternating Direction Implicit (ADI) technique and the Mutliresolution Time Domain (MRTD) algorithm is presented to solve the stability problem restricted by the mutliresolution time domain.
针对传统的时域多分辨分析(MRTD)方法的稳定性不足问题,讨论了一种将交替方向隐式技术(ADI)与MRTD算法相结合的交替方向隐式时域多分辨分析算法(ADI-MRTD)。
5)  MRTD
时域多分辨分析
1.
FDTD is playing a key role in electromagnetic field computation Moreover, it has been demonstrated that FDTD is special case of MRTD (multiresolution in time domain) if the base function and weight function is Haar scaling function in the course of solving Maxell equations by Wavelet-Galerkin scheme Higher-order FDTD algorithm corresponds to Haar wavelet packet functio
本文发现并证明FDTD是时域多分辨分析 (MRTD)的特例。
2.
The mutiresolution time domain (MRTD) scheme based on Daubechies′ compactly supported scaling functions was applied in the time domain analysis of PBG structure.
将基于Daubechies紧支集尺度函数的时域多分辨分析(MRTD)算法用于光子带隙结构(PBG)的时域分析中,实现了MRTD算法的连接边界和PML吸收边界条件,并对带隙结构的反射系数进行了数值模拟和验证,所得结果与解析解一致。
3.
The HEMP responses of ground-laying cables were researched by using MRTD.
利用时域多分辨分析对地面铺设较长缆线屏蔽层的高空电磁脉冲(HEMP)感应电流进行了研究。
6)  multiresolution time domain analysis
多分辨时域分析
1.
A new method of multiresolution time domain analysis is proposed,which is based on Coifman compactly supported scaling functions with some number of vanishing moments.
本文利用Coifman尺度函数具有消失矩和紧支集的特点 ,提出了一种新的多分辨时域分析方法 ,研究了它的数值色散特性 ,并与通常的FDTD方法进行了比较 。
补充资料:多变量频域方法
      线性系统理论中建立在频率域分析基础上的一个理论分支,是用多项式矩阵理论把状态空间方法同经典频率域方法结合起来,研究线性定常多变量控制系统的一整套理论和设计方法。这种方法直接考察系统诸变量间各种运算的相互关系,把问题归结为相应算子的有理分式矩阵的研究。在连续时间情形下,这些算子是普通的微分算子,经过拉普拉斯变换后就变成普通的复数并具有复频率的物理含义。因此这种方法本质上是一种频率域方法。
  
  经典的频率域方法采用传递函数、频率响应等描述系统输入输出关系的特性,对用于解决单变量控制系统的设计问题很方便。1960年前后兴起的现代控制理论以状态空间法(即时间域方法)作为主要的分析和综合方法,它能描述多变量系统的内部结构,而且适于应用计算机进行分析和设计。但状态空间法在处理复杂的工业过程控制时遇到了困难,主要表现在:①难以获得被控对象的精确数学模型;②难以用明显形式规定被控对象行为的性能指标;③直接采用最优控制和最优滤波(见卡尔曼-布什滤波)综合得到的控制器的结构过于复杂,在技术上很难实现。70年代中,H.H.罗森布罗克等人创立了多变量频域方法,成为现代线性系统理论中有影响的学派之一。多变量频域方法能全面反映系统的内部特性,揭示由时间域方法所导出的各种概念和规律,同时还具有经典频率域方法的集约程度高、物理概念清晰和便于对控制系统进行设计调整等优点。
  
  在多变量频域方法中,线性定常系统的数学模型通常采用以部分主要状态变量(称为分状态)z(t)代表系统行为的微分算子描述:
  
T(S)Z=U(S)u

  
y=V(S)Z+W(S)u

  式中u为输入即控制向量,y为输出向量。T(S)、U(S)、V(S)、W(S)都是以s(微分算子或拉普拉斯变换算子)为自变量的多项式矩阵,它们能提供描述系统所需的全部信息。因此,如下构成的分块矩阵被称为系统矩阵:
  系统的许多内部特性都可通过对系统矩阵的分析而得到。例如,T(S)和U(S)的左互质(它们的左乘公因式矩阵的行列式为非零常数)表示系统的能控性,T(S)和V(S)的右互质则表示系统的能观测性。系统的传递函数矩阵 G(S)与系统矩阵间的关系为
  G(S)=V(S)TU(S)+W(S)
  式中T是T(S)的逆矩阵。在多变量频域方法中还常采用系统的矩阵分式描述(简记为MFD),即按照一定条件把G(S)分解成两个多项式矩阵相除的形式:Nr(S)D峊或D屢N1(S)。前者称为右MFD,后者称为左MFD。采用系统的矩阵分式描述,可以方便地应用多项式矩阵理论对系统进行分析和设计。多变量系统的输入输出特性同传递函数的极点(在D(S)和N(S)为互质时,代数方程detD(S)=0的根)和零点(在D(S)和N(S)为互质时,使N(S)秩的s值)之间具有密切的关系。
  
  多变量系统基于频率响应的设计方法有逆奈奎斯特阵列方法、序列回差方法、并矢展开方法和特征轨迹方法等。这些方法的共同特点是,把多输入、多输出且回路间紧密关联的多变量系统的设计问题,化为一系列单变量系统的设计问题,进而可以选用某一种经典方法(例如频率响应法、根轨迹法)完成系统的设计。这些方法需要经过复杂的计算和采用计算机辅助设计和仿真,以及通过人机对话反复修改后才能得到满意的结果。利用带有图形显示终端的人机对话式计算机辅助设计,能充分发挥设计者的经验和知识,设计出满足品质要求、结构简单的控制器。基于多变量频域方法的控制系统计算机辅助设计程序包已经得到广泛应用。
  
  多变量频域方法已比较成功地应用于石油、化工、造纸、原子能反应堆、自动驾驶仪等领域的控制系统的设计。
  
  

参考书目
   H.H.Rosenbrock, State Space and Multivariable Theory, Nelson, London,1970.
   H.H.Rosenbrock,Computer-aided Control System Design, Academic Press,London,1974.
   A.G.J.MacFarlane ed., Complex Variable Methodsfor Linear Multivariable Feedback Systems, Taylorand Francis Ltd.,London,1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条