说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 现代非线性优化算法
1)  modern nonlinear optimization algorithms
现代非线性优化算法
1.
The study of this dissertation mainly discusses several popular modern nonlinear optimization algorithms ( Tabu Search,Simulated Annealing,Genetic Algorithms,Artificial Neural Networks,Ant Colony Optimization etc.
本文探讨了目前现代非线性优化算法(禁忌搜索,模拟退火算法,遗传算法,人工神经网络,蚁群算法等)在大地测量数据反演中的应用,比较了它们在大地测量反演中的优缺点。
2)  nonlinear optimizing
非线性优化算法
3)  modern optimization algorithm
现代优化算法
1.
Genetic algorithm,artificial neural network algorithm and simulated annealing algorithm are representative of the modern optimization algorithm.
以遗传算法、人工神经网络算法、模拟退火算法为代表的现代优化算法,凭借其解决复杂优化问题的有效性已广泛应用于边坡、基坑以及地下洞室等岩土工程领域。
2.
Another is modern optimization algorithm which consists simulated annealing algorithm,artificial immune algorithm,genetic algorithm,ant colony algorithm,particle swarm optimization,Tabu Search,Hopfield neura.
第一种为传统算法,包括分支定界法、改良回路法、贪婪算法、MST算法、MM算法、插入法等;第二种为现代优化算法,包括模拟退火算法、人工免疫算法、遗传算法、蚁群算法、粒子群优化算法、禁忌搜索算法、Hopfield神经网络算法等;第三种为论文提出的DNA计算算法。
4)  constrained nonlinear programming algorithm
非线性约束优化算法
5)  Nonlinear global optimal algorithm
非线性全局优化算法
6)  nonlinear recurrence algorithm
非线性迭代算法
1.
After simplification on the basis of mergence, it results that Rijndael cipher is substantially a nonlinear recurrence algorithm of affine permutation like Y=A(?)S(X)(?)K, which is illustrated with 128 bit block and .
基于归并将Rijndael密码算法了进行简化,结果表明Rijndael密码实质上是一个形如仿射变换Y=A(?)S(X)(?)K的非线性迭代算法,并以分组长度128比特、密钥长度128比特作为特例,给出了二轮Rijndael密码的差分攻击。
2.
The result of merging indicates that Rijnd ael cipher is a nonlinear recurrence algorithm seemed as if an affine transforma tion.
该文对Rijndael分组密码进行了较为深入的研究,将字节代替变换中的有限域GF(28)上模乘求逆运算和仿射变换归并成了一个8×8的S盒,将圈中以字节为单位进行的行移位、列混合、密钥加三种运算归并成了一个广义仿射变换,归并结果表明Rijndael密码实质上是一个形如仿射变换的非线性迭代算法。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条