说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 电波绕射
1)  Radio wave diffraction
电波绕射
2)  Electromagnetic wave diffraction
电磁波绕射
3)  diffraction wave
绕射波
1.
The result shows that the penetration of diffraction wave rays through the low velocity zone in subsided column results in an obvious time delay, with the water filled subsided column being longer in delayed time than that of the non water filled subsided column.
通过对充水型、不充水型陷落柱地质模型的研究 ,发现绕射波的射线穿过陷落柱内的低速体产生明显的时间延迟 ,并且充水型陷落柱比不充水型陷落柱的延迟绕射波延迟时间要长 ;由延迟时间推算出陷落柱内的充填速度 ,据此来分析陷落柱的充水性 。
4)  diffracted wave
绕射波
1.
The portable mine detector,which is used to make advance detection of the front small structure of the mining faces by utilizing the diffracted wave,has become an effective auxiliary tool for the forecasting in the tunnelling.
便携式矿井探测仪是应用绕射波来超前探测巷道掌子面前方小构造的,在速度低于上下围岩的中等速度的特定层位中,地震波将在前方的小断层或小构造处反射,以绕射波形式返回到检波器,其最远的探测距离达184m,成为在掘进巷道中预测预报的有效辅助工具。
2.
Two numerical examples illustrated the theoretical results, and the ellipse features of non-zero offset Fresnel zone expounded the distribution of the main energy of seismic diffracted waves quantitatively.
对水平界面和倾斜界面两种情况下的非零炮检距菲涅耳带方程进行了理论推导,给出了相应的数值算例,指出了菲涅耳带在非零炮检距情况下表现为椭圆的性质,并对非零炮检距情况下地震绕射波能量的主要分布范围做了定量阐述。
5)  wave diffraction
波浪绕射
1.
A numerical model of wave diffraction was established using infinite similar element method(ISEM),coupled with finite element method(Garlerkin),to obtain wave force on a vertical cylinder of arbitrary cross section.
采用无限相似单元方法与有限元法(Garlerk in)相结合对波浪绕射进行了数值模拟,求得任意截面柱状物体上的波浪荷载。
2.
An analytical method was developed to study the wave diffraction effects on V-type bottom-mounted breakwaters.
给出了V形贯底式防波堤对波浪绕射计算的解析方法。
3.
Based on the image theory, the wave diffraction from a cylinder in front of a vertical wall is transformed into the problem of diffraction of bidirectional incident waves from two cylinders.
应用映像原理,将直墙前单个圆柱对波浪的绕射问题,变换为双柱对双向波浪的绕射问题,应用速度势的特征展开方法,建立了直墙前垂直圆柱对波浪绕射的解析解。
6)  diffracted wave direction
绕射波向
补充资料:障碍物电波绕射传播
      无线电波的波长远小于障碍物的尺寸时所发生的电波越过障碍物的传播。常见的障碍物有山丘和建筑物等。相关波段主要是超短波和微波波段。
  
  障碍物绕射传播的参数为衰减和相移。其中主要的是绕射衰减A=20lg(E0/E)分贝,式中E为接收点的绕射场强;F0为相同距离上的自由空间场强。障碍物的绕射特性,与无线电波长λ、障碍物高度h(从收、发点连线算起,向上为正)、障碍物顶部曲率半径R 和绕射角θ等有关。如果曲率半径不大,R/λ<2/(10θ)3,则障碍物可视为刃形(图1a)。绕射场强可按遮光板边缘的光学绕射理论(即菲涅尔-克希霍夫理论)计算,绕射衰减为
  
    A=3-10lg{[0.5-C(v)]2+[0.5-S(v)]2
  式中为第一菲涅尔区半径;d1、d2分别为发射点和接收点到障碍物的距离;C(v)和S(v)为菲涅尔积分。J(v)的图像如图2。由图中看出,当h=-0.577F1时,A=0,即绕射场强达到自由空间场强;h=0时,A=6dB。当v较大时,J(v)=13+20lgv。如果障碍物顶部曲率半径足够大, R/λ>2/(10θ)3,则障碍物可视为圆顶形(图1b)。对此必须利用波动方程处理。作为一级近似,圆顶障碍物绕射衰减可以表示为
  
  
    A=[J(v)+T(ρ)+Q(x)]  (分贝)
  式中J(v)为菲涅尔-克希霍夫绕射分量
  
   
  da、db分别为发射点、接收点到障碍物上的视平点间的距离;d为发射点到接收点之间的距离。  T(ρ)为电波入射于曲面时发生的附加损耗
  
T(ρ)=7.2ρ-2ρ2+3.6ρ3-0.8ρ4

  
  
  Q(x)为电波沿障碍物顶部曲面传播时产生的附加损耗
  
  对于多个障碍物的绕射现象,通常难于进行精确的理论计算。在工程上,常在单个障碍物的绕射计算基础上,用某些近似方法进行估算,或者通过实验进行测量。
  
  在同样的光滑地球表面的电路上,有时,出现障碍物时的绕射信号比没有障碍物时的绕射信号还强。这种现象称为障碍增益现象。原因是在球面绕射时,传播路径都在球面附近,所以沿途都遭受衰减;而在障碍物绕射时,传播路径离开地面,电波主要在障碍物顶部遭受衰减。特别当障碍物两侧电路上的地形对反射有利时,接收点还可能出现多条同相路径分量,从而使总的接收信号进一步加强。不仅如此,在远距离传播电路上,超短波和微波障碍物绕射信号还可能比相应的对流层散射信号强。因此,障碍物绕射是实用中值得重视的一种远距离传播方式。
  
  在工程上,为了获得较高的绕射场强,必须适当地选择地形、收发点位置和天线高度。必要时还可在障碍物顶部外加金属板以改变电波方向,把一条电路变成两条视线电路的串联(无源中继);或者外加绕射体,用来改善障碍物绕射性能。绕射体有屏蔽型和介质型两种,前者用于阻挡接收场中的反相分量;后者则用来把接收场中的反相分量变成同相分量。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条