说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 超外差体制
1)  superheterodyne system
超外差体制
2)  super heterodyne
超外差
1.
The topology combining super heterodyne and zero if for single chip implementation for FM SCA RF reception has been mainly proposed.
首先介绍了FMSCA无线寻呼的传统接收结构 ,重点提出超外差与零中频相结合以单片化实现FMSCA射频接收的拓朴结构 ,并给出了数学推导 ,证明了该拓朴结构能有效地恢复出原始信
2.
RF circuit adopts TDD mode and super heterodyne structure,designing Rx & Tx controlling circuit and channel feeding back circuit.
RF电路采用TDD模式和超外差架构,设计收发控制和信道反馈电路,实验调试结果表明电路射频信号收发正常。
3)  superheterodyne [英]['sju:pə'hetərədain]  [美][,sʊpɚ'hɛtərə,daɪn]
超外差
1.
Based on the fundamental of superheterodyne spectrum analyzers, this paper comprehensively analyzes the factors, which restrict the frequency range that an analyzer can operate down to.
本文结合超外差频谱分析仪的基本原理对制约其下限频率的因素进行了全面分析,并针对零频响应这一主要因素简要介绍了零频对消技术的原理。
2.
The design of the subsystem is based on CDMA800M, and the typical Superheterodyne Structure is used in RF transceiver.
系统设计应用于CDMA800M,发射机和接收机都采用了典型的超外差式结构,它具有优良的动态范围和选择性,在给定的性能要求下具有开发周期短、风险小等特点。
3.
The detailed design process of a superheterodyne receiver RF front-end system working at 900MHz is given in this thesis,re.
本文主要介绍一种工作在900MHz的超外差接收机射频前端的设计,分别从系统和各单元模块设计的角度来详细说明该接收机射频前端的设计过程。
4)  superhet [英][,sju:pə'het]  [美][,supɚ'hɛt]
超外差的
5)  infradyne ['infrədain]
低外差;超外差机
6)  superhet [英][,sju:pə'het]  [美][,supɚ'hɛt]
超外差收音机;超外差
补充资料:超外差
      利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预先确定的频率的方法。超外差原理最早是由E.H.阿姆斯特朗于1918年提出的。这种方法是为了适应远程通信对高频率、弱信号接收的需要,在外差原理的基础上发展而来的。外差方法是将输入信号频率变换为音频,而阿姆斯特朗提出的方法是将输入信号变换为超音频,所以称之为超外差。1919年利用超外差原理制成超外差接收机。这种接收方式的性能优于高频(直接)放大式接收,所以至今仍广泛应用于远程信号的接收,并且已推广应用到测量技术等方面。
  
  超外差原理如图1。本地振荡器产生频率为f1的等幅正弦信号,输入信号是一中心频率为fc的已调制频带有限信号,通常f1>fc。这两个信号在混频器中变频,输出为差频分量,称为中频信号,fi=f1-fc为中频频率。图2表示输入为调幅信号的频谱和波形图。输出的中频信号除中心频率由fc变换到fi外,其频谱结构与输入信号相同。因此,中频信号保留了输入信号的全部有用信息。  超外差原理的典型应用是超外差接收机(图3)。从天线接收的信号经高频放大器(见调谐放大器)放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后送给用户。接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。
  
  
  接收机的输入信号uc往往十分微弱(一般为几微伏至几百微伏),而检波器需要有足够大的输入信号才能正常工作。因此需要有足够大的高频增益把uc放大。早期的接收机采用多级高频放大器来放大接收信号,称为高频放大式接收机。后来广泛采用的是超外差接收机,主要依靠频率固定的中频放大器放大信号。
  
  和高频放大式接收机相比,超外差接收机具有一些突出的优点。
  
  ① 容易得到足够大而且比较稳定的放大量。
  
  ② 具有较高的选择性和较好的频率特性。这是因为中频频率fi是固定的,所以中频放大器的负载可以采用比较复杂、但性能较好的有源或无源网络,也可以采用固体滤波器,如陶瓷滤波器(见电子陶瓷)、声表面波滤波器(见声表面波器件)等。
  
  ③ 容易调整。除了混频器之前的天线回路和高频放大器的调谐回路需要与本地振荡器的谐振回路统一调谐之外,中频放大器的负载回路或滤波器是固定的,在接收不同频率的输入信号时不需再调整。
  
  超外差接收机的主要缺点是电路比较复杂,同时也存在着一些特殊的干扰,如像频干扰、组合频率干扰和中频干扰等(见混频器)。例如,当接收频率为fc的信号时,如果有一个频率为f婞=f1+fi的信号也加到混频器的输入端,经混频后也能产生|f1-f婞|=fi的中频信号,形成对原来的接收信号fc的干扰,这就是像频干扰。解决这个问题的办法是提高高频放大器的选择性,尽量把由天线接收到的像频干扰信号滤掉。另一种办法是采用二次变频方式。
  
  二次变频超外差接收机的框图如图4。第一中频频率选得较高,使像频干扰信号的中心频率与有用输入信号uc的中心频率差别较大,使像频信号在高频放大器中受到显著的衰减。第二中频频率选得较低,使第二中频放大器有较高的增益和较好的选择性。
  
  
  随着集成电路技术的发展,超外差接收机已经可以单片集成。例如,有一种单片式调幅-调频(AM/FM)接收机,它的AM/FM高频放大器、 本地振荡器、 混频器、AM/FM中频放大器、AM/FM检波器、音频功率放大器以及自动增益控制(AGC)、自动频率控制(AFC)、调谐指示电路等(共700个元件)均集成在一个面积为2.4×3.1毫米2芯片上,它的工作电压范围为1.8~9伏,工作于调幅与调频方式的静态电流分别为3毫安和5毫安。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条